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1. Operaciones binarias. Grupos. Ho-
momorfismos

1.1. Operaciones binarias

1. (Bloch 7.1.1.) ;Cuadles de las siguietes férmulas definen una operacién binaria en el conjunto
dado?

a) Sea * definida por z * y = xy para todo z,y € {-1,-2,-3,... }.

b) Sea ¢ definida por z oy = \/zy para todo z,y € [2,00).

¢) Sea @ definida por © @ y = z — y para todo z,y € Q.

d) Sea o definida por (z,y) o (z,w) = (z + 2,y + w) para todo (z,y), (z,w) € R?\ {(0,0)}.

e) Sea ® definida por  ® y = |z + y| para todo z,y € N.

f) Sea ® definida por z ® y = In(|zy| — e) para todo z,y € N.

2. (Bloch 7.1.2.) Para cada una de las siguientes operaciones binarias, determine si es asociativa,

conmutativa, si existe un elemento identidad y, en caso de que exista, qué elementos tienen
inverso.

a) @ en Z definida por x @ y = —xy para todos z,y € Z.

b) x en R definida por x x y = = + 2y para todos =,y € R.
¢) ® en R definida por x ® y = ¢ + y — 7 para todos x,y € R.
e) o en R definida por x o y = = para todos z,y € R.
f) ¢ en Q definida por x ¢y = x + y + xy para todos z,y € Q.

)
)
)
d) * en Q definida por = *y = 3(x + y) para todos z,y € Q.
)
)
g) ® en R? definida por (z,y) ® (z,w) = (42z,y + w) para todos (z,y), (z,w) € R2.

1.2. Grupos y Homomorfismos

1. Sea A un conjunto. Defina la operacién binaria A en P(A) (partes de A) por
XAY =(X-Y)u(Y - X), X, Y e P(4),

(esta operacién binaria se llama diferencia simétrica). Compruebe que (P(A), A) es un grupo
abeliano. ;Qué grupos se obtienen si |A| = 0,1,27?



2. Mostrar que el conjunto G = {5,15,25,35} es un grupo con la multiplicacién, médulo 40.
Misma pregunta para S = {3,9,15,21}, con la multiplicacién, médulo 24. Identifique estos
grupos con Z/4Z o el grupo 4 de Klein, segin sea el casoE|

3. En clase se vio que salvo isomorfismo solo hay dos grupos de orden 4, a saber, Z/4Z y el
grupo de Klein V. Considere los siguientes grupos: GG1, el grupo de simetrias de un rectangulo
en R? digamos con vértices en (+2,+1), con la operacién de composicién. Argumentar por
qué

G, ={id,R,S,T},

donde R(z,y) = (—z,y), S(z,y) = (z,—y), T(z,y) = (—z,—y). Considere ademds Go =
{+£1, +i}, donde i € C es la unidad imaginaria (i> = —1). Comprobar que en efecto G es un
grupo y que G5 es un grupo con la multiplicacion de nimeros complejos. Realiza la tabla de
grupos en ambos casos y decidir con qué grupo de orden 4 son isomorfos.

4. Sea G = R\ {—1} con la operacién a * b = a + b + ab. Demostrar que (G, *) es un grupo.
Ademés, él es isomorfo a (R*,-).

5. En C, mostrar que z-w = Z-w, para todo z,w € C. En particular, la conjugacién ¢ : C — C,
¢(z) = Z es un homomorfismo entre (C*,-) y si mismo.

6. El conjunto
Zii)={a+ibeC:abeZ}

se conoce como el anillo de los enteros de Gauss.

a) Mostrar que (Z[i], +) es un grupo abeliano. También que es cerrado bajo productos.

b) Demostrar que la norma N : Z[i] — Z dada por N(z) = 2% o explicitamente N (a+ib) =
a® + b?, satisface que N(z-w) = N(2) - N(w).

¢) Mostrar que si z € Z[i] es invertible respecto a la multiplicacién entonces z = +1 6 =+i.

[ ] [ ] ] ] [ ] [ ]
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L ] L L L L ] L ]
7. Sea (G,-) un grupo con elemento neutro e. Demuestre que si a> = e para todo elemento

a € G, entonces G es abeliano. Recuerde que a® = a - a.

8. Si (G, *) es un grupo, ¢ : G — G dada por ¢(g) = g~ ' (tomar inverso) es un homomorfismo
de grupos si y solo si G es abeliano.

lRuth 1. Berger (2005) Hidden Group Structure, Mathematics Magazine, 78:1, 45-48, |doi:
10.1080,/0025570X.2005.11953299


http://dx.doi.org/10.1080/0025570X.2005.11953299
http://dx.doi.org/10.1080/0025570X.2005.11953299

9. Sea (G, ) un grupo y fije a € G. Comprobar que ¢, : G — G dada por ¢,(g) = aga™! es un
isomorfismo de G. Mostrar ademas que ¢, o ¢, = ¢q.p, para todo a,b € G. ;Qué significa que
ca(g) = g? ;Qué es c.?



2. Numeros naturales

2.1. Axiomas de Peano

1. Demostrar todas las afirmaciones sobre las operaciones y el orden en N que no se hicieron en
clase (11.09.2025). Note que por definicion n™ = (n+0)* =n+0" =n+1yasin <nt.

2. Mostrar a partir de las propiedades desarrolladas con los axiomas de Peano que

a) Sin,meNyn+m=0, entonces n =0y m = 0.
b) SineNyn#0yn+#1 entonces existe k € N tal que n = (k*)*.

¢) Sin,meNynm=1entoncesn=1y m=1.

3. En clase demostramos que no existe m € N tal que 0 < m < 1. Demostrar méas generalmente
que dado n € N, no existe m € N tal que n < m < n*. Como n < n + 1, esto justifica que
escribamos

N=10,1,2,3,...}.

También muestre que m < n equivale a que m + 1 < n.

4. (Potencias) Sean a,n € N. Se define la potenciacién por las reglas a® = 1y a" =a

Demostrar por induccién que

".a.

g™t = gm . an7 Qv = (an)m, (a . b)n —a” - bn, a,b,n,m € N.

Ademids 1" = 1y m! = m. ;Qué pasa con 0°? Mostrar también que si a < by n > 0, entonces
a™ < b". Ademas, si n <m y a > 1, entonces a" < a™.

5. (Extra - Tarski’s high school algebra problem) Las identidades del bachillerato de Tarski son
11 axiomas para la suma (+), multiplicacién (x) y exponenciacién (1) dadas por

(1) z+y=y+z 8) 2t ==
®) (x-y)-z=2-(y-2)

(2) (r+y)+z=z+(y+2) (9) 2¥t% =¥ . x?
6) z-(y+z)=z-y+az-2

@B)ar-l=zx (10) (z-y)* =2 -y~
(7) 1*=1

4) z-y=y-x (11) (ax¥)* = a¥*

Como hemos visto, NT satisface estas propiedades. El problema de Tarski es responder:
jexisten identidades que involucran solo suma, multiplicacién y exponenciacién, que son



verdaderas para todos los niimeros enteros positivos, pero que no pueden demostrarse usando
solo los axiomas 1-117 En 1980 Alex Wilkie respondié negativamente planteando la propiedad

(T+z)+ (1 +z+22))" (L+2*)"+ 1+ 22 +2H") =

Wimy): (L4 2)" + (1 +az+a?))" (142" + (1 +a® +a)Y)”

que relaciona estas operaciones. Wilkie mostré que existen sistemas finitos con las tres ope-
raciones que satisfacen los axiomas pero no W (x,y) B

Para el caso de NT demuestre W (z, y). Indicacién: factorice 1 —z+22 de 14+ y de 1+z2+z4.
Intuitivamente, W (z,y) no es demostrable de los axiomas porque esta solucién depende de
la resta.

2.2. Induccion

1. Demuestre que

11+11++1 171+1++1
2 3 4 1999 2000 1001 = 1002 2000

donde los signos se van alternando en el lado izquierdo de la ecuacién. Este es un ejemplo
donde es més facil demostrar un hecho general (jcudl?) que un caso particular.
1 1 1 n

2. e = .
1.2+2.3+ +n(n+1) n+1

3. a) (Sumas y productos telescépicos) Si ag, ..., an € R, by, ..., b, € R*, entonces

n—1 n—1 b b
ZajJrlfaj:anfao, H ;)+1:bi.
— 0 0
7=0 7=0
- 1
b) Calcular —_—.
) ; E(k+1)
i k-1 1— 22"
¢) Siz # 1 entonces H (1 + 2 ) = . { Cuanto vale este producto cuando z = 17
-z
k=1

4. Mostrar que todo n € Nt se puede escribir como sumas de potencias de 2 (2° = 1,2! =
2,22 =4,...). Por ejemplo,

5 =22 420 14 =23 + 22 4+ 21,

5. Resolver la recurrencia a,, = 11a,—1 — 10a,,n > 3, donde a; =9 y as = 99.

6. Considere la recurrencia
ap = Qlp_1 + Ban_2, n>2

, con o, fB,a0,a1 € R fijados. Si 72 = ar + B tiene una tnica solucién ry, mostrar que
an, = (co + c1n)ry, para ciertas constante cg, ¢;. {Cuéles son?

7. a) Six €R, r+#1, entonces

"t —1
1+x+x2—|—-~-+x":71, n € N.
T —
LBurris, S., Lee, S. (1993). Tarski’s High School Identities. The American Mathematical Monthly, 100(3), 231-236.
doi: 10.1080,/00029890.1993.11990393
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b) Sixz =k+ 1€ N, muestre que la anterior igualdad implica que k divide a (k + 1)™ — 1,
para todo n € N. Por ejemplo, 3 divide a 4™ — 1, 4 divide a 5™ — 1 y asi sucesivamente.

¢) Si ponemos z = a/b, comprobar que la anterior igualdad implica que
a™ —b" = (a—b)(a" P +a™ 2+ a™ PV 4 fab™ R0, m € N*t.
;Qué casos de factorizacién reconoce en esta igualdad para valores pequenos de m?

d) ;Coémo la siguiente figura ilustra una demostracién sin palabras de la primera igualdad?

8. El niimero 4ureo es el valor numérico de la proporciéon que guardan entre si dos segmentos
de recta a y b (a > b), que cumplen la siguiente relacién: la longitud total, suma de los dos
segmentos a y b, es al segmento mayor a, lo que este segmento a es al menor b. Como ecuacién
algebraica esto significa que

a+b

a

a
-

a) Si ¢ = a/b, muestre que ¢ satisface ¢ =1+ é y por tanto ¢ = 1+2‘/5.

b) Demostrar que para todo n € NT valen las identidades
G+ 0"+ " =" —p—1, 4+ T =" -,
¢2+¢4+“'+¢2n:¢2n+1_¢.

9. (Triangulacién de Poligonos) Un poligono P es una figura geométrica cerrada plana que
consisten en una sucesién de segmentos si, So, ..., s, llamados lados. Cada par de lados
consecutivos se intersecan en un punto comun llamado vértice. Un poligono es simple si
ningin par de lados consecutivos se intersecan.

Una diagonal de un poligono simple P es un segmento que conecta dos vértices no conse-
cutivos de P. La diagonal es interior si estd contenida dentro del poligono (salvo por sus
vértices). Una triangulacién de P consiste en dividir a P en tridngulos afiadiendo diagonales
interiores.

Demostrar que un poligono simple de n > 3 lados se puede triangular con n — 2 tridngulos.
Para ello puede usar el siguiente resultado (no trivial): Cada poligono simple con al menos
cuatro lados tiene una diagonal interior.



2.3. Coeficientes binomiales.

1. De dos demostraciones, una algebraica y otra combinatoria, de la identidad
n+m n m
(") = () (2) o
2n n
=2 2,
(3) =)

2. a) Calcule el coeficiente de z* de dos maneras en la expansién (14+x)™(1+z)" = (1+z)™*",
para demostrar la identidad de Vandermonde

(-2 6)

En particular, deduzca que
(2n> N ) (n)2
n) Z k)~
k=0

b) Suponga que uno tiene m manzanas y n naranjas. Eligiendo k frutas de entre estas
m + n y contando de dos maneras, argumente nuevamente esta identidad.

En particular, obtenga que

3. Supongamos que debemos formar un comité de n personas a partir de un grupo de 2n perso-
nas, compuesto por n mujeres y n hombres. Ademads, el comité debe tener como presidenta
a una mujer. Contando de dos formas distintas la forma de integrar este grupo de personas,

argumente la identidad
n 2
2n —1
E k o n " , n>1.
k n—1
k=1

4. Demuestre de manera combinatoria y utilizando el Teorema del Binomio las identidades

Zk(Z) =n2" tn>1, Y k(k-1) (Z) =nn—-12""2, n>2.
k=1 k=2

 Cémo se pueden generalizar estas férmulas? Note que otra forma posible de establecer la

n

primera férmula es partir de la identidad (1+z)" = ZZ:O (k)gck, derivar respecto a x y luego
evaluar en z = 1.

. n n—1 n k+1 n B
5. Si 0 < k < n son enteros, entonces k(k) = n(k1> y (k) = nk<k+1) ., Qué pasa
sik=06n?

6. Conjeture y demuestre el valor de la suma Z(—l)’%(:)
k=1

7. La siguiente es una variante de la identidad de Vandermonde

- k —k 1
Z(SJF >(n )z(ernJr ) (s,m,n € NT),
P k m s+m-+1

Asuma que n > m. Argumente de manera combinatoria esta identidad considerando el total
de caminos reticulares de (0,0) a (s +m+ 1,n —m). Indicacién: k en la suma corresponde a
la coordenada y = k mas alta donde el camino interseca la recta vertical x = s.



(s+m+1,n—-—m)

3 (s+m+1,0)

8. Sean f,g: R — R funciones.

a) Siambas son n veces diferenciables, entonces su n-ésima derivada se calcula por

a0 =5 (7)o

k=0

b) Considere el operador de diferencias Af(x) := f(z+ 1) — f(x). Si para n > 1 definimos
A"f = A (A" f), entonces

A f) = 31y (?)f(x +n—j).

Jj=0

9. El n-ésimo nimero de Bell B,, cuenta el nimero de particiones (o clases de equivalencia) de
un conjunto de n elementos. Por ejemplo By = By = 1 y By = 5. Justifique por qué estos
valores se pueden calcular de manera recursiva por

Bpi1 = Z (Z) By.

k=0

Indicaciéon: a partir de una particién arbitraria de n + 1 elementos, al eliminar el conjunto
que contiene el primer elemento, se obtiene una particién de un conjunto més pequeno de
0 < k < n elementos.

2.4. Algunos problemas de conteo

1. Encontrar el nimero de cadenas binarias de longitud n que contengan un nimero par de 0’s.

2. Encontrar una recurrencia para el niimero s,, de cadenas binarias de longitud n que contengan
la cadena 00.

3. a) Un grupo contiene n hombres y n mujeres. ;Cudntas maneras hay de ordenarlos en una
fila si los hombres y las mujeres se alternan?

b) Si hay un grupo de n hombres y m mujeres. ;Cudntas maneras hay de ordenarlos en
una fila si los hombres estan juntos?

4. ;Cuantos enteros n con 1000 < n < 9999 hay que sean pares?

5. ;Cuantos numeros enteros positivos entre 100 y 999 inclusive son: divisibles por 77, impares?,
tienen los mismos tres digitos decimales?, no son divisibles por 4?7, son divisibles por 3 o por
47, no son divisibles por 3 ni por 47, son divisibles por 3 pero no por 47, son divisibles por 3
y por 47



10.

11.

12.

13.

14.

(,Cuantos subconjuntos con mas de dos elementos tiene un conjunto con 100 elementos?

Se lanza una moneda 10 veces, y en cada lanzamiento sale cara o cruz. ;Cuantos resultados
posibles hay en total?, jcuantos con dos caras?, jcudntos con maximo tres cruces?, ;cuantos
con el mismo nimero de caras y cruces?

;Cudntas cadenas se pueden formar al permutar las letras de ABRACADABRA? Mista
pregunta para ELECTROENCEFALOGRAMA.

(De cudntas formas se pueden ubicar 8 torres de ajedrez del mismo color (indistinguibles) en
un tablero 8 x 8 de tal manera que no se ataquen entre si. Aquf es valido que las torres del
mismo color se ataquen. ;Que pasa si tenemos 8 torres de 8 colores diferentes?

Tome una matriz de n x n con 0’s en todas sus entradas. ;De cudntas maneras podemos po-
sicionar n 1’s en ella de forma que en cada fila y columna haya exactamente un 1?7 Establezca
una biyeccién entre estas matrices y el conjunto S, de permutaciones de [n].

Consideramos caminatas formadas avanzando en cada paso una unidad hacia el frente o hacia
arriba. ;Cudntos caminos de esta forma hay del punto (0,0) al punto (7,6) que contengan el
trayecto senialado en la figura?

Ry

a) ;Cudntas cadenas de bits contienen exactamente ocho 0’s y diez 1’s si cada 0 debe ir
seguido inmediatamente de un 17

b) Una cadena palindroma es aquella cuya inversién es idéntica a si misma (por ejemplo
1001). ;Cudntas cadenas de bits de longitud n son palindromas? Misma pregunta si se
consideran cadenas formadas por las letras aq, ..., Gmn.

Recuerde que un grafo es una pareja G = (V, E), donde V es el conjunto de vértices y F
es el conjunto de ejes o aristas (edges). Un ciclo (loop) en G es una arista e € V' que va de
un vértice en si mismo, es decir, e = {v}. El grado de un vértice v (deg(v)) es el nimero de
aristas incidentes con él. Note que un ciclo suma 2 al grado.

Demostrar el Lema del apretén de manos (Handshaking lemma): Si G = (V, E) es un grafo
con m = |E| aristas, entonces

Z deg(v) = 2m.

veV

Use esta férmula para determinar el nimero de aristas del grafo simple completo K,, =
([n], En), donde E,, = {{i,j}:i #j}.

a) Sean (w;,1;) € R% i = 1,2,3,4,5 cinco puntos distintos en el plano, con coordenadas
enteras. Demostrar que el punto medio del segmento que une al menos una pareja de
estos puntos tiene coordenadas enteras.

b) Sean (x;,y;, %) € R3, i = 1,...,9 nueve puntos distintos, con coordenadas enteras.
Demostrar que el punto medio del segmento que une al menos una pareja de estos
puntos tiene coordenadas enteras.

10



15.

16.

17.

18.

19.

20.

21.

22.

¢) ;Cémo se generalizan estos enunciados para puntos en R%?

Considere cinco puntos distintos sobre una esfera. Demostrar que siempre es posible dividir
al esfera en dos hemisferios de forma que 4 puntos estdn en un solo hemisferio (incluido su
borde).

Considere un digito j € {1,2,...,9} y n € N. Mostrar que siempre existe un nimero formado
solo por j’s y 0’s que es divisible por n. En clase vimos el caso 7 = 1.

Tome ay,...,a, € Z, no necesariamente distintos. Entonces, siempre existe un conjunto de
, . ¢ 1as .
numeros consecutivos ax41, ag42, - - ., G¢ CUyO SUMAa Zi:k+1 a; es un multiplo de n. Indica-

cién: considere a; + - -+ + a,, mod n.

Considere una baraja estdndar (52 cartas, 4 simbolos de 13 cartas cada uno). ;Cudl es el
minimo nimero de cartas que se necesitan tomar para tener 3 cartas de la misma pinta?
(,Cudl es el minimo nimero de cartas que se deben tomar para tener al menos una de cada
pinta?

a) ;Cuéntos numeros en {1,...,1000} no son divisibles por 7,11 ni 137

b) ;Cudntas permutaciones de las 27 letras de nuestro alfabeto no contienen ninguna de

las cadenas “pero”, “pues’ni “ano” ?

= Una bandera debe consistir en n franjas horizontales, donde cada franja puede ser de
uno de tres colores: rojo, blanco o azul, y ninguna franja adyacente puede tener el mismo
color. jCudl es el total de disefios posibles?

= Supongamos ahora que, para evitar la posible confusién de izar la bandera al revés,
se decreta que las franjas superior e inferior deben ser de colores diferentes. Sea a,, el
nimero de tales banderas con n franjas. Hallar los valores a; y as.

= Determine una relacion de recurrencia entre a, y a,—1. Indicaciéon: jcomo se pueden
relacionar una bandera de n franjas con el mismo color en la primera y ultima franja y
una bandera de n — 1 franjas con las franjas superior e inferior de colores diferentes?

= A partir de la recurrencia obtenida, obtenga una relacién de recurrencia lineal de orden
2 entre ap,ap_1y Anp_2.

= Determine una férmula cerrada para a,,, es decir, resuelva la recurrencia obtenida.

Recuerde que una permutacién m € S,, es un desarreglo (derangement) si no tiene puntos
fijos, es decir, w(k) # k, para todo k € [n]. Si D,, denota el nimero de tales permutaciones,
sabemos del Ejemplo 2.17 de las notas de clase que

D,=(n—-1)(Dp-1+Dp_2),n>3 Dy =0,D; =1.
Emplee esta recurrencia para demostrar que también
D, =nD,_1+ (-1)7, n>1.
Sean n > 2y r,s > 1 enteros. Calcular el niimero de formas de escribir
n=(ki+-+k)Gr+-+Js),
donde k;, j; € N. ;A qué se reduce el resultado si n = p es primo? Investigue en qué consiste

la convolucion entre dos funciones f,g : N — R y exprese su respuesta general en términos
de esta operacién.

11



2.5. Extra: Sobre sumas y funciones caracteristicas.

Estos ejercicios recogen algunas propiedades que usamos en clase, al discutir la regla de inclu-
sién-exclusion.

1. Sea I un conjunto finito de indices, {I1, ..., I, } una particién de I y para cada i € I considere
a; € R. Entonces
n
I Bt
il k=14i€l,

(Qué propiedades de la suma requerimos para justificar esta igualdad?

2. Fije un conjunto universal A. Dado X C A, la funcién 1x : A — {0,1} dada por

1x(a) 1, siac€X,
a) =
X 0, siaeA\X,

se conoce como la funcion caracteristica de X en A. Ella satisface las siguientes propiedades,
validas para todo a € A:

a) 1p(a) =0y 1a(a) = 1. Més generalmente, 14\ x(a) =1 —1x(a).

b) 1xny(a) =1x(a)-1y(a). Ademds, si XAY = (XUY)\ (X NY) es la diferencia simétrica
entre X e Y, entonces 1xay(a) = |1x(a) — 1y (a)|.

1X1U...an(a) =1- H?:l(l — 1Xj (a))

X CY siysolosilx(a)<ly(a), para todo a € A.

Si A es finito, entonces ). 4 1x(a) = | X].

X ={acA:1x(a) =1} = 1'({1}). Emplee la asignacién X + 1y y f ~ f~1({1})
para establecer una biyeccién entre p(A) y 24 := {f : A — {0,1} : f funcién} y concluir
que [p(A)] = 2141,

2.6. Extra: Numeros de Fibonacci

Los siguientes ejercicios contienen algunas, de las numerosas identidades que satisfacen los
nimeros de Fibonacci, donde n > 1,m > 0. Los ejercicios se pueden resolver por induccién.

1. Foymyr = FoFy + FopiFongas 7. FLFs + FoFs5+ -+ Foy 1 Fyy = F3 .

) = _ _ > 5.

2 Fn 5Fn 4+3Fn 5771»_5 8 S]A _ 1 (1):|7An — [F;+1 FFn:|

3. FR+F2+Fi+ - +F:=F,F, 1. ) | n A'n-1
Aplique determinantes para concluir que

4. Fo+Fo+ -+ Fop = Fopq — 1 FpoFy o — F2 = (-1)".

5. Fy+ Fy+ -+ Fop_q = Fop. e

prEs A e = 9. ()" <F, <2
6. F07F1+F2*F3+"'7F2n—1 +F2n =
Fo,_1—1. 10. Fn+1 < (%)n

11. Mostrarﬂ que F? — F? | = (Fj — Fj_1)(Fj 4+ Fj_1) = Fj_2Fj;1 para comprobar la férmula

Fn+1 Fn 1 0 Fn+1 Fn — Fn—an+2 F72L
Fn Fn—l 0 -1 Fn Fn—l F;f Fn—QFn+1

20scar Ciaurri (2022) An “Esoteric” Proof of Gelin-Cesaro Identity, American Mathematical Monthly, 129:5,
465-465, doi: 10.1080/00029890.2022.2043096
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Luego tome determinantes para demostrar la identidad de Gelin-Cesdaro

Fn72anan+1Fn+2 - Fs =-1
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3. Numeros enteros

3.1.
1. Enc
2. a)

b)
c)
d)
3. a)

b)
c)

Divisibilidad

uentre un ntimero natural positivo n tal que n/2 sea un cuadrado, n/3 sea un cubo y n/5
un numero elevado a la 5.
Muestre que cualquier primo de la forma 3k + 1 es de la forma 6m + 1.
Muestre que todo primo mayor que 3 es de la forma 6k + 1 6 6k — 1.
Muestre que todo primo mayor que 5 es de la forma 10k £ 1 6 10k £ 3.
Comprobar que todo primo p > 5 siempre termina en 1,3,7 6 9.
Supongamos que S contiene 2n elementos, y que S estd particionado en n subconjuntos
disjuntos, cada uno conteniendo exactamente dos elementos de S. Muestre que esto se
puede hacer en precisamente de
(2n)!
2nn!

(2n—1)(2n—3)---5-3-1 =

formas.
Muestre que (n + 1)(n +2)---(2n) es divisible por 2", pero no por 27 +1,

Sia,b > 0, entonces a!’-b!|(ab)!. Por ejemplo, (3n)!/n!(3!)" € NT. Indicacién: coeficientes
multinomiales.

4. Sean k € Z y n € N*. En lo siguientes ejercicios establezca las propiedades de divisibili-

dad

planteadas. Intente resolver las preguntas de dos formas, una directa y otra empleando

congruencias (cuando lo considere posible):

a

b

o

d
e

)
)
)
)
)

1,5
5. Mostrar que gn” +

3 | (k‘g —+ Qk) f) 7 | 32n+1 + 277,+2'

6 | (17k* 4 103k). .

30| |( (k5 — k) ) g) a®" — 1 es divisible por 2”2 para todo
. entero impar a.

21 | (47l+1 +52n—1)-

7] (5 2, h) 32" +1 es divisible por 2, pero no por 4.

1

34 7
3n” + {gn es entero, para todo n € Z.
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3.2.

10.

Maximo comun divisor

. Dados a,b € NT, determine condiciones sobre la descomposicién prima de a y b para deter-

minar cuando ged(a,b) = 1.

Dados a,b € NT | si ged(a, b) = lem(a, b), entonces a = b. Por otra parte, si a|b, determine los
valores ged(a, b), lem(a, b).

Encontrar el maximo comin divisor de los niimeros dados y expresarlo como combinacion
lineal entera de estos:

a) a="7469 y b = 2464. ¢) a=—202y b=189.
b) a = 1000y b = 10101. d) a=6,b=10,c=15.

a) Sean € Nt. Si 1< d < n,entonces d | n!, pero d {n! + 1.
b) Muestre que ged(n!+ 1, (n+1)!+1) = 1.

Si k € Z, calcular ged(2k + 1,9k + 4) y ged(2k — 1,9k + 4).
Asuma que d|a y d|b, donde d > 1. Entonces lem(a/d,b/d) = lem(a, b)/d.

Demostrar las siguientes afirmaciones suponiendo que ged(a,b) = 1.

a) Si c|a, entonces ged(b, c) = 1. c) ged(a+b,a—b)=162.
b) ged(a+ b, adb) = 1. d) ged(a +b,a% —ab+b*) =16 3.

Sean n,a y b enteros positivos.
a) Sib=aq+r,0<r<a,entonces n® —1 = (n® —1)(n®"¢+nb=2¢ ... 4t ") + (n" —1).
Por tanto, al dividir n® — 1 por n® — 1 se obtiene como residuo n” — 1.
b) Demuestre que si n > 2, entonces ged(n® — 1,n° — 1) = pged(@?b) _

¢) Sin>1,al|bsiysolosi(n*—1)|(n®—1).
(Divisibilidad y ntmeros de Fibonacci)

a) 2| F, siysélosi 3|n.

b) 4| F, siysélosi 6]|n.

¢) ;Qué se obtiene de dividir Fj,;2 por Fy, 17 Use esto para establecer que ged(F,,, Fiq1) =
1.

d) Sim,n >1, se tiene que F), | Fyyn. Por ejemplo, 5 | Fs,,.

a) Considere x,y € Z, no nulos, y la matriz con coeficientes enteros y tal que

b
d
ad — bec = £1. Mostrar que ged(z,y) = ged(ax + by, cx + dy). {Recupera esta ecuacién
resultados de algunos de los ejercicios anteriores? Indicacién: si @’ = ax +by y 3y =

cx + dy, escriba x,y en términos de z’,y’.

b) (Tal vez requiere dlgebra lineal) Generalice este resultado a ged(x1, .. ., z,) = ged(2], ..., 2)),
donde z; € Z no son nulos, 2/ = (z,...,2,,)" = Az, y A es una matriz con entradas
enteras y det(A) = £1.
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3.3. Congruencias

1. a) ;Cudl es el tltimo digito en la representacién decimal de 24007
b

)

) Encuentre los dos tltimos digitos de la representacién decimal de 95°°.
¢) ;Cudl son los dos tltimos digitos en la representaciéon decimal de 34097

)

d) Emplear exponenciacién modular rapida para calcular 32993 mod 99.

2. En un capitulo de los Simpsons, Homero escribié
398712 + 4365'2 = 4472'2.

Emplear congruencias para decidir que si esta igualdad es verdadera o falsa.

3. Resolver las siguientes congruencias (ecuaciones lineales en Z/mZ):

a) 19z = 4(mod 141). ¢) 89z = 2(mod 232).
b) 552 = 34(mod 89).

4. a) Sean a € Z y k,I,m,n € N*. Suponga que a* = 1 (mod n) y que m = [ (mod k).
Pruebe que a™ = a' (mod n).

b) ;Bs cierto que si a* = b*(mod n) y k = j(mod n), entonces a’ = b/ (mod n)?
5. Sia€ZymeNT", entonces a(a+1)(a+2)---(a+m—1)=0 méd m.

6. (Pequenio teorema de Fermat) Sea n € Z.

a) Si ged(n,7) = 1, entonces n® — 1 es divisible por 7. Ademés, n” —n es divisible por 42.
b) n'3 —n es divisible por 2,3,5,7 y 13.
¢) Si p # q son primos, entonces p?~t + ¢?~t = 1 (mod pq).

7. Tienes un montén de monedas desconocido. Si las agruparas de 3 en 3 sobrarian 2 monedas.
Si las agrupas de 5 en 5 sobrarian 3 monedas. Si las agrupas de 7 en 7 sobrarian 2 monedas.
(,Cudl es el menor nimero posible de monedas que puedes tener?

8. (Criterios de divisibilidad) Sea
k .
n:ZaJ»lOJ = (ay - - - a1a9)10, a; €{0,1,2,...,9}
j=0

la escritura de n en base decimal. Las siguientes afirmaciones son validas:
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3.4.

7.

8.

a) 2| nsiy solo siag es par. k
) 21 g)9|nsiysolosiQ\Zaj.

k
. . =0

b)3|n51y5010513|2aj. J

j=0 h) 10| n siy solo si ap = 0.
¢) 4| nsiysolosi4|al0+ ag. A
d) 5|nsiysolosiay=036b5. i) 11 | n siy solosi 11 | Z(—l)jaj.
e) 7T|nsiysolosi7]| (ag---a1)— 2ag. 3=0
f) 8| nsiysolosi8|ay10?+ a;l10 + ag. J) 13| nsiysolosi 13| (ak---a1) — 9ag.

Numeros primos
. Sin >4 no es primo, n | (n —1)!. Concluya que p es primo si y solo si (p —1)! = —1(mod p).

—1
. Demuestre que si p es primo, entonces (p ) = (—1)k(mod D).

k

Si p es primo y a® = b*(mod p), entonces a = b(mod p) 6 a = —b(mod p). Por ejemplo, si
a* = 1(mod p), entonces a = +1(mod p).

Sea py, €l n-ésimo primo. Mostrar que P, = (p1p2 - - - pn) + 1 nunca es un cuadrado perfecto.

Sea p un numero primo y sean a # b enteros positivos menores que p. Entonces p divide a
aP=2 + aP73b 4 aP~A% + - 4 bP72

n—1

D (=1nkak|.

k=0

a) Siz € Cyn €N es impar, entonces z" +1 = (x + 1)

b) Sin = ab con b impar, entonces 2% + 1 | 2" + 1.
¢) Demuestre que si 2™ + 1 es primo entonces m es una potencia de 2.
d) Los nimeros de Fermat se definen por F,, = 22" 4 1. El primer ntimero de Fermat que
no es primo es Fy porque
(20427 +1)(2% - 2% 4210 21T 21 29 9T 4 1) =232 4 1.
Mostrar que FoFy -+ F,_1 + 2 = F,, n > 1. Concluya que gcd(F,, Fy,,) = 1 si n # m.
;Por qué esto demuestra que hay infinitos primos?

e) Compruebe también las propiedades para n > 2:

Fp=(Fp1-1241, F,=F,1+2* Fy---Fy,  F,=F?

n—

1= 2(Fn_o—1)2

Demostrar que existen infinitos primos de la forma 4n+ 3. Indicacién: Por contraccién, asuma
que existen solo finitos primos p1, . .., py, de la forma 4n+3 y considere N = 4(py - -+ pr) — 1.
Si ¢ es primo con ¢|N, entonces ¢ = 4r + 1. Asi N = (dmq + 1)(dmge + 1) --- (dmy + 1),
llegando a una contradiccion.

(Infinitud de primos -Auric, 1915-) Supongamos que hay solo un nimero finito de primos
pL<py<---<p.ysean N =pl cont> 1 entero.

a) Todo entero 1 < m < N puede escribirse de manera unica en la forma

m=p{'pf*---pl",

donde (fy,..., fr) € N.
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b) De pli < pzfl <m < N = p!, deduzca que

log pr
flStEa E20g7p7
log p1

¢) Contando de dos formas distintas el ndmero de enteros 1 < m < N, concluya que

pl=N<(E+1).

t=1,...,7

Pero si t es suficientemente grande p! > (t£ + 1)", obteniendo una contradiccién. Con-
cluye que hay infinitos niimeros primos.

9. Empleando el teorema de Dirichlet, mostrar que existen infinitos niimeros primos que termi-
nan en 7777. De mas ejemplos sobre este tipo de fenémenos.

10.  a) (Legendre-Polignac) Si p es primo, entonces la méxima potencia de p que divide a n! es
| n
1) = il
vp(nl) = Z L’jJ .
j=1
En realidad esta suma es finita, ;hasta qué termino se detiene?

b) (Requiere célculo) [Existen infinitos primos] Por contradiccién, asuma que existen finitos
primos. Dado k € NT, podemos escribir k! = Hp p*»(®) Por la férmula anterior,

vp(K!) SZ%Z% <k
j=1

k
. . . p
Por tanto, k! < (], p)*. Pero esto contradice que lim 7(1_[17 ) = 0. Por tanto, no
p k—+o0 k!

pueden haber finitos primos.

11. Mostrar que todo primo p > 3 se puede escribir de la forma /24n + 1, para cierto n € N.

Por ejemplo,
5=+24-1+1, 41 =+/24-70 + 1.
12. Si n tiene k factores primos impares distintos entonces 2* | p(n).
13. Mostrar que si p1, ..., p, son primos mayores a 5 y 6 divide a p? + - -- + p2, entonces 6|n.
14. Empleando el postulado de Bertrand demostrar las siguientes afirmaciones:

a) pn < 2", donde p,, denota el n-ésimo primo y n > 1.
b) Existe un primo p € (n, 2n] que divide a ().
c) (27?) £ mPF, para todo m,k € N*.

15. Mostrar que para n > 2 se tiene que

{ 9 ( (n—l)!—i—l)J 1, m es primo,
cos” | mT——— | | =
n 0, otros.

Este tipo de férmulas son la base de expresiones del tipo

o)

i=1 J

—1/n

para calcular el n-ésimo primo p, EI, aunque impracticas computacionalmente.

1C. P. Willans (1964) On Formulae for the nth Prime Number. The Mathematical Gazette, 48(366), 413-415
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4. Numeros racionales

4.1. Propiedades generales

1. Completar las demostraciones sobre las propiedades de las operaciones y orden de Z y Q que
no se hicieron en clase.

2. Muestre que en la construccién de Q, si en vez de trabajar con Z x Z* se hace con Z X Z,
la relacién de equivalencia: (a,b) ~ (¢, d) si ad = be, resulta ser trivial, es decir, (Z x Z)/ ~
tiene un solo elemento.

3. Considere la recta ¢, = {(z,y) € R? : y = az}, donde a € R es fijo. Demostrar que £,
interseca a Z2 \ {(0,0)} si y solo si @ € Q. En dicho caso determinar esta interseccién.

4. Muestre que para todo n € NT, la fraccién es irreducible.

2n +
30n + 2

5. Expresar los siguientes racionales en la forma a/b:

a) 0,1212 + 3, T415. ¢) 1+ 11 .
b) 9,9+ (6,6 x 3,3). 1—1—71
¢) 0,123456789/0,987654321. 1+ 1
d) 0.a1asasas . .., donde a; = res(j, 10) es (Qué se obtiene si se anaden mas 1’s a

o
el residuo de dividir j por 10. la fraccion

6. Sire(@*,r—l—%eZsiysolosir::I:L
7. Sean r < s racionales y 0 < X\ < 1 racional. Entonces:

a) r < Ar+(1—X)s <s.;Qué se obtiene si A = 1/27

b) Reciprocamente, si r < t < sy t es racional, entonces t = Ar + (1 — \)s, para cierto \ €
[0,1]NQ. ;Por qué esto demuestra que entre dos racionales existen infinitos racionales?

c) Si ¢ < § son racionales (b,d > 0), entonces § <t = Zié < 4. Esta fraccién se conoce

como la mediante entre a/by c¢/d. ;Cudl es el valor de A en este caso?

na+t+mc
nb+md?’

d) Responda la misma pregunta siendo ahora ¢t = con n,m € NT,

8. Considere la funcién f: Q™ — Q dada por
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Mostrar que si p? < 2, entonces p < f(p) y f(p)? < 2. De la misma forma, si p? > 2, entonces
f(p) <py f(p)? > 2. Concluir que

a) A= {p eQt:p?< 2} es acotado superiormente y no tiene supremo en Q.

b) B= {p ceQt:p?> 2}, aunque acotado inferiormente, no tiene infimo en Q.

4.2. Representaciones de QQ

1. Justifique geométricamente a través de la figura (semejanza de tridngulos) la suma de la serie
geométrica

o
n 1
g T = , 0<r<l.
1—r
n=0

~i=

2. Encontrar el niimero real asociado a las siguientes fracciones continuas simples:

a) [1;2,2,2,...]. d) [1,2,1,2,1,2,...].
b) [2:1,1,1,...].
¢) [0:k,... k], k € N*. e) [4:1,2,3,2,3,2,3,...].
3. Dados r = [ag;a1,a2,...,a,],8 = [bo;b1,ba,...,b,] € Q, determine condiciones sobre los

coeficientes a;, b; para decidir cuando r < s.

4. a) Mostrar que —[0;a1,a9,...,a,] = [~1;1,a1 — 1,a9,...,a,], donde los a; > 1,j =
1,...,n son enteros.

b) Emplear esto para expandir a —27/56 como fraccién continua simple finita de la forma
[-1;1,...].

5. Considere los enteros a =59 y b = 13.

a) Hallar ged(a,b) y escribirlo como combinacién lineal de ellos.

b) Expandir a % como fraccién continua simple finita.
¢) Determine la posicién de % en el arbol de Calkin—-Wilf.

6. Demostrar por induccién que r € Q* y 1/r € QT estdn en el mismo nivel del 4rbol de
Calkin—Wilf.
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7. Sea r € QT que aparece en el nivel n del drbol de Calkin-Wilf. Si r = [ag; a1, ..., ax] es su
fraccién continua simple finita (donde a; > 0 para todo i y ag > 1), entonces

ap+ay+---+ap =n.

8. Si z € Q*, comprobar que

2l IT laly=1.

p primo

9. (Numeros arménicos) Los nimeros arménicos se definen por

1 1
H,=1+=-+---+—, n > 1.
2 n

A continuacién se presentan dos argumentos para mostrar que H,, nunca es entercﬂ salvo en
el cason = 1.

a) Sea p el maximo primo tal que p < n. Por el postulado de Bertrand n < 2p. Asuma
por contradicciéon que H,, es entero. Mostrar que pH, — 1 = p%, donde ged(p,b) =1y
obtener asi una contradiccion.

b) Sea r el maximo talque 2" < n < 2"1. Si L =lem(1,2,...,n), entonces L = 2"¢, con ¢
impar (v2(L) =2"). Si L = kag,k=1,...,n, entonces LH,, =a; +azs+ -+ + a, = M.
Mostrar que cada aj,j 7# 2" es par y por tanto M es impar, mientras que L es par. Por
tanto, H,, = M/L es una fraccién irreducible, no entera.

10. (Kiirschak) Si m > n, entonces H,, — H, nunca es entercﬂ
1 n 1 1 1 n 1
y — = :
n+l nn+1)" pg plp+qe  alp+a)

1 1
b) Sin es impar, mostrar que n = (n+ 1)/2 T n(n + 1)/2'

¢) Una fraccion egipcia es un nimero racional de la forma

1
11. a) Sin,p,q € NT, entonces ~=

1 1
aq QAp
donde n € Nt y a; < a3 < -+ < a, son naturales. Por ejemplo 2 = 1 + &. Estas
expansiones no son unicas, por ejemplo
5 1 1 1 1 1 1 1 1

191 ~ 25757 763300 T 873960180913 | 1527 612795642093 418846225 _ 33 | 121 ' 363"

Investigue el algoritmo de Fibonacci (induccién fuerte sobre m) para demostrar que
cada racional 0 < m/n < 1 se puede escribir como una fraccién egipcia.

1Parece que el primer lugar donde aparece una prueba de este resutaldo es en: Theisinger (Bemerkung iiber
die harmonische Reihe, Monatsh. f. Mathematik und Physik 26 (1915), 132-134, donde emplean el postulado de
Bertrand y determinantes.

2Para més informacién puede consultar la nota) Conrad K. The p-adic growth of harmonic sums
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5. Numeros reales

5.1. Cuerpos ordenados. Numeros reales, algebraicos, tras-
cendentes.

1. Mostrar que Q[v/2] = {a + b¥/2 + cv/4 € R : a,b,c € Q} es un cuerpo con las operaciones
usuales. Determinar el reciproco de 1 + /2 como elemento de @[\3/5]

2. Determinar si los siguientes niimeros son racionales o irracionales:

a) V3 -2 e) 14 31/5 4 32/5 1 33/5 1 34/5,

b) V2 +V3+5. f) 0,10110011100011110000111100000 . . .
¢) logyg 2. g) 0,123456789101112131415161718. ..
d) 14234 22/3, h) /2025 — 7 + /2025 + 7.

3. Determine si los siguientes nimeros son algebraicos, trascendentes y/o construibles:

a) V3+ V7. e) cos ().
b) e+ 1. f) 1+
c) 3+ /19 g) sin ().
d)a—&—bze@[z] h) e+ L.

4. Sea K un cuerpo y a,b,c € K. Comprobar que

(a+b+c) (a

a®+b3+c3—3abe = (a+b+c)(a* +b*+c* —ab—bc—ac) = 5

—b)2+(b—c)2+(c—a)2],

donde la tltima igualdad es valida si char(K) # 2. Si K = R concluya que a® +b% + ¢ = 3abc
siysolosia+b+c=06a=b=c.

5. Sea K un cuerpo ordenado y asuma que cada x € K con x > 0 tiene una raiz cuadrada, es
decir, existe £ € K con & > 0 tal que £2 = x (se denotaré & = /).

a) Mostrar que dicha raiz es tnica.

b) Siz >0y a>0.Entonces

a a
T+ — < V22+a < 24+ —.
2V +a 2z
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¢) Siz,y € K yx >y, entonces

o a?—y? x — /2% —y?
\/ﬁ—\/ 5 +\/ 5 :

7T+V13  1+V13
2 2

Por ejemplo, comprobar que en R

6. a) SearcQyazecR\Q. Entonces r +x,7 -z € R\ Q. Ademds /" €¢ R\ Q si n € N*.
b) ;Existen ndmeros irracionales z,y tales que ¥ € Q7 Indicacién: La solucién usual es

2
T = \/i\f (la constante de Gelfond—Schneider que se sabe que es irracional. ;Quién
deberia ser y?

¢) Considere ahora x = log;4(4) e y = v10. Mostrar que son irracionales y calcular z¥.

7. Denotemos por € C R al conjunto de niimeros construibles (con regla y compés).

a) Demostrar que siy € €y y # 0, entonces 1/y € €.

b) Siy € €y y >0 entonces \/y € €. Indicacién: Calcular la longitud r del segmento de
recta perpendicular al eje z que une (1,0) con la parte superior del circulo con centro
(y +1/2,0) y radio y + 1/2.

c¢) Sea 6 € R. Demostrar que cos(f) € € si y solo si sin(f) € €. Ademds si cos(f) € €

entonces cos(26), cos () ,sin(20),sin () € €.

8. Si a, 8 € R, entonces

a+pB+la—p
2 b

a+ﬁ—m—6y

min(a, §) = .

mix(a, §) =

Ademds méx(a, §) + min(a, 5) = a + S.
9. Sean a,b € Ry 0 < XA < 1. Entonces:

a) min{a,b} < Aa+ (1 — A\)b < méx{a, b}.
b) (Densidad de los ntmeros irracionales) Dados a,b € R con a < b, existe z € R\ Q tal
que a <z < b.

ax
10. Sea 2 € R\ Q. Determinar condiciones sobre a,b, ¢, d € Q para que
cx

b
] sea irracional.

11. Sea ¢ € R un ntimero trascendente sobre Q, n € NT,r € Q* y p € Q[z]. Entonces r¢, "™, p(¢)
y % son trascendentes. ;Qué afirmaciones sobre nimeros algebraicos se obtienen al aplicar la

contrareciproca de la anterior afirmacién?

12. Es posible demostrar que el conjunto de ntimeros algebraicos reales A es un cuerpo con las
operaciones de R. Ademads F. von Lindermann demostré en 1882 que m ¢ A. Empleando estas
observaciones se puede demostrar directamente que R\ A no es contable. Para ello considere
la funcién f : [0, +00) — R\ A dada por

T—x, sim4+x€eA.

f(x):{ﬂ—&—x, sim+x & A,

Demostrar que f estd bien definida. Ademés es inyectiva: si f(x) = f(y), entonces

z=|[f(x) =7 =[f(y) =7l =y
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Por tanto, R\ A contiene un conjunto no contable, concluyendo asi el resultado. E|

5.2. Sobre la construccion de R

1. Sea C' C R un conjunto acotado superiormente. Mostrar que ¢ = sup C si y solo si ¢ es cota
superior de C' y para todo € > 0, existe x € C tal que ¢ — € < z. Formular y demostrar la
afirmacion andloga para el caso del infimo.

2. Sean A, B C (0,+00) acotados superiormente. Si definimos A- B :={abeR:a € A,b € B},
mostrar que A - B es acotado superiormente y sup(A - B) = sup(A) - sup(B).

3. A C R se dice inductivo si 0 € Ay si para todo a € A, se tiene que a+1 € A. Demostrar que
N es la interseccién de todos los conjuntos inductivos de R (y por tanto el conjunto inductivo
més pequeno contenido en R).

4. Demostrar que toda sucesién de Cauchy en Cq es acotada.

5. Comprobar que si lim a, =ay lim b, =0ben Q, entonces lim a,b, = ab. Mostrar
n—+o00 — 00 n—+00

n
ademads que el producto de sucesiones de Cauchy en Q es de nuevo una sucesiéon de Cauchy.

6. Comprobar que si «, 8 son cortaduras de Dedekind, entonces a < S, =6 § < a.

7. Mostrar que si aq,...,q, son contaduras de Dedekind, lo mismo es valido para U?:1 oy
ﬂ;-lzl aj. ;Qué nimeros reales representan estas nuevas cortaduras?

8. Dado z € Ry n € NT considere el intervalo I,, = [z — +, z+ 1]. Demostrar que ﬂ I, = {«}.

n=1

1J. Gaspar. Direct Proof of the Uncountability of the Transcendental Numbers. The American Mathematical
Monthly, 121(1):78-80, 2014. doi: 10.4169/amer.math.monthly.121.01.080

24


https://www.tandfonline.com/doi/pdf/10.4169/amer.math.monthly.121.01.080

6.

6.1.

1.

6.2.

1.

Numeros complejos

Representacion cartesiana

Calcular la siguientes expresiones:

n—1

N\ 1 L

) C+0 e
Jj=0

b) Las partes reales e imaginarias de Zt

z—

1, en términos de = Re(2) y y = Im(z).

Muestre que para todo n € NT, la funcién z — 2™ + 2" solo asume valores reales, mientras
que z — 2™ — 2" solo asume valores imaginarios puros.
1
z+—-|=2,.
z

= az + b. Més generalmente, que

Determinar los siguientes conjuntos, graficando de ser posible:

{zeC:z2=-z}, {z€C:Im(iz—2) >0}, {ze€C:|z+42|+|z—4]| =T}, {z eC:

Dado z € C*, mostrar que existen a,b € R tales que 22

dado n € NT, existen a,, b, € R tales que z" = a,,z + b,,.
Mostrar que tres puntos distintos zp, z1, 2 € C son colineales si y solo si (z—z2g)/(z1—20) € R.
Comprobar que |Re(z)| + |Im(z)| < /2|2, para todo z € C.
Dados z,w € C se tiene que
|z +w? + |z —w* = 222 + |w?).

Interprete esta férmula geométricamente.

Demuestre que lajabb <1lsilal <1y b <1. Ademds 1“_}12 =1sila|]=16 b =1.
Representacién polar
Emplear la forma polar para calcular los niimeros
(1+4)?

(L+4)%  (1+9)7°
Ademés hallar las posibles raices v/i, v/1 + i.
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l2|
z

z

2. Mostrar que mt
todon € N.

€ R para todo z € C*. Ademss si |z| = 1, entonces ZQZ,ZH € R, para

3. Comprobar que S* = {z € C : |z| = 1} es un subgrupo de (C*,-). Ademas I = {z € C :
existe n € N tal que 2" = 1} es subgrupo de S*.

4. Demostrar que (1+44)"+(1—i)" = 2¢/2" cos(nm/4) y (V3+i)"+ (V3 —i)* = 2"+ cos(nr /6),
para todo n € N. Indicacién: Escriba e™/* y ¢™/6 en forma cartesiana.

5. Si z € Cy Re(2™) > 0, para todo n € N, entonces z es un niimero real positivo.

6. a) Fije z € C. Suponiendo que puede usar derivadas, mostrar que para todo entero positivo
n, se verifica que

nz"t — (n+1)2" +1

n—1 __
1+2z4---+nz""" = G172

; Qué identidad conocida se obtiene al tomar z — 17

b) Sea w € C\ {1} una raiz n—ésima de la unidad. Calcular 1 + w + w? +--- + w1 y
1+ 2w+ 3w? + -+ +nw L.

7. Sean z = ¢ 2/ = ¢ ¢ §1. Comprobar que

B}

242 cos( *0/>
= 010
1+ 22 cos ( 5 )

z4+2 z—=2 z—2
y )
1—zz"" 14227 1 — 22

Encontrar expresiones similares para

8. Mostrar que

<1 —|—itant>n 1+ itan(nt) > 1
= n> 1.

1—itant)  1—itan(nt)’

9. Utilice la siguiente figura para comprobar las identidades

or si0<f<m,
0

0 i —7w<0<0.

|1 — €2 = 2(1 — cos(#)) = 4sin(0/2)?, arg(1 —e") = {
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10.

11.

12.

Empleando las formulas para la extraccion de raices cuadradas en forma cartesiana comprobar

que
5 1+4cosf 93 1—rcosf

2 ’ 2 ’
donde los signos se determinan segin cada caso. Emplear estas férmulas para comprobar que

s V2HV2  V2-V2 iz V6+HV2Z V62
e = 2 + 5 2, e = 1 +1 1 .

cos(6/2) sin(6/2)

Mostrar que
627T1/5:\/5_1+ZV5+\/5 (317(‘/5'):\/5~‘_1_|_Z‘/5_\/g
4 22 4 22

observando que ¢>™/® satisface (z + 1/2)% 4 (2 +1/2z) = 1, que se puede resolver empleando
la férmula cuadratica dos veces.

(Identidades de Lagrange) Si 6 € R\ {0, +27, +47m,...} y n € NT se verifica que:

in (22) cos((n
cosf + cos(QG) 4+t COS(nH) — s ( 2 ) (( + 1)9/2)

sin (g) ’
: né\ o;
5 +1)0/2
sin @ + sin(20) + - - - + sin(nf) = sin () S?n((;l )6/ )’
sin ()
1 in ((n+1)0
5t cos(6) + cos(20) + - - - + cos(nb) = 81112(s(1z(9/22;)
Puede establecer estas identidades empleando la expansién 1+ z 4+ --- + 2"~ = Zzn—_1lv para

z = e £ 1 y luego igualando partes reales e imaginarias, ver Proposicién 13.4 del Libro
Introduccién al Anélisis Real, guia actualizada de clase. Puede consultar demostraciones
geométricas recientes en los articulos:

= Jonathan Balsam (2022) Proof Without Words: Lagrange’s Trigonometric Identity, The
College Mathematics Journal, 53:5, 399-399, |doi: 10.1080/07468342.2022.2118996

= Jonathan Balsam (2023) Proof Without Words: Lagrange’s Trigonometric Identity (Part
II), The College Mathematics Journal, 54:3, 235-235, |doi: 10.1080,/07468342.2023.2206782

13. Empleando la congruencia de Wilson, demostrar que dado n € N*, entonces

14.

e27r7i(n71)!/n —1 B {]_7 n es primo,

e~2mi/n —1 )0, otros.

Complejos como matrices) Considere R : C — C' C R?*2, dada por R(a + ib) = a b .
—b a

a) R preserva las operaciones. Ademds |z|? = det(R(2)), z € C.
b) 1/z, z # 0, se corresponde a la matriz inversa de R(z).

cosf) sinf

>
—sinf cos@)’ conr 20,6 €R,

¢) Todo elemento de C' admite una representacion r (

que corresponde a la forma polar de un complejo.
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7. Polinomios en una variable

7.1. Polinomios
En adelante K denotard un cuerpo.

1. Encontrar polinomios S, T € K|t] tales que ged(p, q) = Sp + Tq, donde:

w p(t) =12+ 1,q(t) =t° +1 € Q. s p(t) =12+ 2t +1,q(t) =3+ 2t + 2 en
7./3Z[t).

2. Mostrar que si p-¢q = 0, donde p,q € K]Jt], entonces p = 0 6 ¢ = 0. jEsto sigue siendo vélido
si asumimos que K es solo un anillo?

3. Comprobar que si p(t) = an(t —a1) -+ (t — ay,) € K[t], entonces p(0) = an(—1)" (a1 - o).
Ademas, si a; # 0 para todo j, también podemos escribir

= t
s =0 I (1- ).
s Qa;
=1
dando otra representacién de la factorizacién de p(¢).

4. Sean ag,...,an, € K con a; # a; si i # j. Mostrar que si p,¢ € K[t] tienen grado n y
p(aj) = qla;),j =0,...,n, entonces p(t) = q(t).

5. Si F' es un cuerpo, mostrar que existen infinitos polinomios ménicos irreducibles en F'[z].

6. Mostrar que si F' es un cuerpo finito, existen polinomios no constantes en F'[t] que no tienen
raices en F'.

7. a) Factorizar t* + 2 en R[t] y en C[t] como producto de factores irreducibles.
b) De un ejemplo de un polinomio no constante en (Z/4Z)[t] que sea una unidad.

¢) {Cémo se factoriza tP + a? € (Z/pZ)[t], donde a € Z/pZ?

8. Cousidere el polinomio P(t) = t? — ¢, donde p € Z es primo.

a) Mostrar que tP —t = H?;é(t—j) se factoriza en Z/pZ. Por tanto, tP~1 —1 = Hf;; (t—7).
b) Emplear estos polinomios para deducir la congruencia de Wilson (p — 1)! = —1(modp).

¢) Comprobar que P(t — a) = P(t), para todo a € Z/pZ.
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9. «a)

b)
)

Sea f € R[t] ménico tal que f(tg) > 0 para todo ty € R. Demuestre que f = P? + Q?
para ciertos P, Q € RJ[t].

Sea f € R[t] tal que f(tp) > 0 para todo ty € R. Demuestre que f = P? + Q2 para
ciertos P, Q € R[t].

Encuentre P,Q € R[t] tales que t® +t* + 12 + 1 = P? + Q2.

10. Sea K un cuerpoy p(t) = ag+ait+---+a,t™ € K[t]. La derivada de p se define formalmente
como p'(t) = aj + 2ast + -+ + na,t" L.

a)
b)

11.  a)

Demuestre que (p +¢q)' =p' +¢' vy (pq)’ = p'q + pq’, para todo p, q € K[t].

Sia e Kyp(t)=q(t)(t—a)+p(a), entonces g(a) = p’(a). Mds generalmente, comprobar
la férmula de Taylor

Dados p = ag + a1t + -+ + a,t"™,q € K[t], se define la composicidn entre p y q por
(poq)(t) :=ap+a1q(t)+---+anq(t)™. ;Qué grado tiene poq? Mostrar que (pogq)’(t) =
(p" o q)(t) - ¢ (D).

Demostrar que p no tiene raices repetidas si y sélo si ged(p,p’) = 1.
[

t],Z/pZ[t], p primo,

(7)
t—a

(Bajo qué condiciones podemos concluir que p’ = 0 si p € R[t],C
respectivamente?

Si p(t) = [1j=,(t — a;) € K[t], donde ay,...,a, € K son elementos distintos entre si,
entonces

(t—a)- 1 (t—an) Z Clj =p'(a;) = [[(a; — a).

I#j

(Interpolacién de Lagrange) Sea f € K|t] con deg f < n y considere la funcién racional

f(t)/p(t). Al escribir f(t) = f(a;) + (t — a;)g;(t) con g; € K[t] y degg; < n — 2 se
obtiene que

= ‘7
t tha] aJ Z tfaj a
Jj=1

Jj=1

J

Demostrar que el polinomio R(t) = »°7_, Iffig% de grado < n — 2 es el polinomio cero.
J

Concluya la férmula de interpolaciéon de Lagrange

flay) T =2
k#j

. Aj — Ak

j=1
Encontrar un polinomio de grado 5 en Q] tal que p(0) = 1, p(1) = —1, p(—1) = 0,
p(2) =0, p(=2) =3y p(10) = 10.
Dado p € C[t], demostrar que p(Z) C Q si y solo si p € Q[t]. Indicacién: interpolar p en
0,1,...,n, con n = degp.

D) —k+1
Considere los polinomios pg(z) = (i) = 2@ —1) k'(sc + )k >1,y (§) =1
Mostrar que deg pr, = k y aunque pg(Z) C Z, pi, € Q[t] \ Z[t].
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12. Si p(t) = c[[;—, (t — a;)™ € C[t], mostrar que

Pt) <~ my
p(t) _;t*%'

13. Seaa=z+ % € Q(z). Demostrar que x™ + %n se puede escribir como un polinomio en a con
coeficientes enteros. De hecho

"+ a:i" = P,(a), P,i1(a) =aPp(a) — Pr-1(a)

donde Py =2y P; = a. En términos de los polinomios de Chebyshev T,,(cos #) = cos(nf) se

puede escribir
1 —1
oy L _or <l’+x)
" 2
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