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1. Operaciones binarias. Grupos. Ho-
momorfismos

1.1. Operaciones binarias

1. (Bloch 7.1.1.) ¿Cuáles de las siguietes fórmulas definen una operación binaria en el conjunto
dado?

a) Sea ∗ definida por x ∗ y = xy para todo x, y ∈ {−1,−2,−3, . . . }.
b) Sea ⋄ definida por x ⋄ y =

√
xy para todo x, y ∈ [2,∞).

c) Sea ⊕ definida por x⊕ y = x− y para todo x, y ∈ Q.

d) Sea ◦ definida por (x, y) ◦ (z, w) = (x+ z, y+w) para todo (x, y), (z, w) ∈ R2 \ {(0, 0)}.
e) Sea ⊙ definida por x⊙ y = |x+ y| para todo x, y ∈ N.
f ) Sea ⊗ definida por x⊗ y = ln(|xy| − e) para todo x, y ∈ N.

2. (Bloch 7.1.2.) Para cada una de las siguientes operaciones binarias, determine si es asociativa,
conmutativa, si existe un elemento identidad y, en caso de que exista, qué elementos tienen
inverso.

a) ⊕ en Z definida por x⊕ y = −xy para todos x, y ∈ Z.
b) ⋆ en R definida por x ⋆ y = x+ 2y para todos x, y ∈ R.
c) ⊗ en R definida por x⊗ y = x+ y − 7 para todos x, y ∈ R.
d) ∗ en Q definida por x ∗ y = 3(x+ y) para todos x, y ∈ Q.

e) ◦ en R definida por x ◦ y = x para todos x, y ∈ R.
f ) ⋄ en Q definida por x ⋄ y = x+ y + xy para todos x, y ∈ Q.

g) ⊙ en R2 definida por (x, y)⊙ (z, w) = (4xz, y + w) para todos (x, y), (z, w) ∈ R2.

1.2. Grupos y Homomorfismos

1. Sea A un conjunto. Defina la operación binaria △ en P(A) (partes de A) por

X△Y = (X − Y ) ∪ (Y −X), X, Y ∈ P(A),

(esta operación binaria se llama diferencia simétrica). Compruebe que (P(A),△) es un grupo
abeliano. ¿Qué grupos se obtienen si |A| = 0, 1, 2?
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2. Mostrar que el conjunto G = {5, 15, 25, 35} es un grupo con la multiplicación, módulo 40.
Misma pregunta para S = {3, 9, 15, 21}, con la multiplicación, módulo 24. Identifique estos
grupos con Z/4Z o el grupo 4 de Klein, según sea el caso.1

3. En clase se vio que salvo isomorfismo solo hay dos grupos de orden 4, a saber, Z/4Z y el
grupo de Klein V . Considere los siguientes grupos: G1, el grupo de simetŕıas de un rectángulo
en R2 digamos con vértices en (±2,±1), con la operación de composición. Argumentar por
qué

G1 = {id, R, S, T},

donde R(x, y) = (−x, y), S(x, y) = (x,−y), T (x, y) = (−x,−y). Considere además G2 =
{±1,±i}, donde i ∈ C es la unidad imaginaria (i2 = −1). Comprobar que en efecto G1 es un
grupo y que G2 es un grupo con la multiplicación de números complejos. Realiza la tabla de
grupos en ambos casos y decidir con qué grupo de orden 4 son isomorfos.

4. Sea G = R \ {−1} con la operación a ∗ b = a + b + ab. Demostrar que (G, ∗) es un grupo.
Además, él es isomorfo a (R∗, ·).

5. En C, mostrar que z · w = z ·w, para todo z, w ∈ C. En particular, la conjugación c : C → C,
c(z) = z es un homomorfismo entre (C∗, ·) y si mismo.

6. El conjunto
Z[i] = {a+ ib ∈ C : a, b ∈ Z}

se conoce como el anillo de los enteros de Gauss.

a) Mostrar que (Z[i],+) es un grupo abeliano. También que es cerrado bajo productos.

b) Demostrar que la norma N : Z[i] → Z dada por N(z) = zz o expĺıcitamente N(a+ib) =
a2 + b2, satisface que N(z · w) = N(z) ·N(w).

c) Mostrar que si z ∈ Z[i] es invertible respecto a la multiplicación entonces z = ±1 ó ±i.

7. Sea (G, ·) un grupo con elemento neutro e. Demuestre que si a2 = e para todo elemento
a ∈ G, entonces G es abeliano. Recuerde que a2 = a · a.

8. Si (G, ∗) es un grupo, ι : G → G dada por ι(g) = g−1 (tomar inverso) es un homomorfismo
de grupos si y solo si G es abeliano.

1Ruth I. Berger (2005) Hidden Group Structure, Mathematics Magazine, 78:1, 45-48, doi:
10.1080/0025570X.2005.11953299
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9. Sea (G, ·) un grupo y fije a ∈ G. Comprobar que ca : G → G dada por ca(g) = aga−1 es un
isomorfismo de G. Mostrar además que ca ◦ cb = ca·b, para todo a, b ∈ G. ¿Qué significa que
ca(g) = g? ¿Qué es ce?
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2. Números naturales

2.1. Axiomas de Peano

1. Demostrar todas las afirmaciones sobre las operaciones y el orden en N que no se hicieron en
clase (11.09.2025). Note que por definición n+ = (n+ 0)+ = n+ 0+ = n+ 1 y aśı n < n+.

2. Mostrar a partir de las propiedades desarrolladas con los axiomas de Peano que

a) Si n,m ∈ N y n+m = 0, entonces n = 0 y m = 0.

b) Si n ∈ N y n ̸= 0 y n ̸= 1 entonces existe k ∈ N tal que n = (k+)+.

c) Si n,m ∈ N y nm = 1 entonces n = 1 y m = 1.

3. En clase demostramos que no existe m ∈ N tal que 0 < m < 1. Demostrar más generalmente
que dado n ∈ N, no existe m ∈ N tal que n < m < n+. Como n < n + 1, esto justifica que
escribamos

N = {0, 1, 2, 3, . . . }.
También muestre que m < n equivale a que m+ 1 ≤ n.

4. (Potencias) Sean a, n ∈ N. Se define la potenciación por las reglas a0 = 1 y an
+

= an · a.
Demostrar por inducción que

am+n = am · an, an·m = (an)m, (a · b)n = an · bn, a, b, n,m ∈ N.

Además 1n = 1 y m1 = m. ¿Qué pasa con 00? Mostrar también que si a < b y n > 0, entonces
an < bn. Además, si n < m y a > 1, entonces an < am.

5. (Extra - Tarski’s high school algebra problem) Las identidades del bachillerato de Tarski son
11 axiomas para la suma (+), multiplicación (×) y exponenciación (↑) dadas por

(1) x+ y = y + x

(2) (x+ y)+ z = x+(y+ z)

(3) x · 1 = x

(4) x · y = y · x

(5) (x · y) · z = x · (y · z)

(6) x · (y + z) = x · y + x · z

(7) 1x = 1

(8) x1 = x

(9) xy+z = xy · xz

(10) (x · y)z = xz · yz

(11) (xy)z = xy·z

Como hemos visto, N+ satisface estas propiedades. El problema de Tarski es responder:
¿existen identidades que involucran solo suma, multiplicación y exponenciación, que son
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verdaderas para todos los números enteros positivos, pero que no pueden demostrarse usando
solo los axiomas 1-11? En 1980 Alex Wilkie respondió negativamente planteando la propiedad

W (x, y) :

(
(1 + x)y + (1 + x+ x2)y

)x ·
(
(1 + x3)x + (1 + x2 + x4)x

)y
=(

(1 + x)x + (1 + x+ x2)x
)y · ((1 + x3)y + (1 + x2 + x4)y

)x
.

que relaciona estas operaciones. Wilkie mostró que existen sistemas finitos con las tres ope-
raciones que satisfacen los axiomas pero no W (x, y) 1.

Para el caso de N+ demuestreW (x, y). Indicación: factorice 1−x+x2 de 1+x3 y de 1+x2+x4.
Intuitivamente, W (x, y) no es demostrable de los axiomas porque esta solución depende de
la resta.

2.2. Inducción

1. Demuestre que

1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

1999
− 1

2000
=

1

1001
+

1

1002
+ · · ·+ 1

2000

donde los signos se van alternando en el lado izquierdo de la ecuación. Este es un ejemplo
donde es más fácil demostrar un hecho general (¿cuál?) que un caso particular.

2.
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)
=

n

n+ 1
.

3. a) (Sumas y productos telescópicos) Si a0, ..., an ∈ R, b0, ..., bn ∈ R∗, entonces

n−1∑
j=0

aj+1 − aj = an − a0,

n−1∏
j=0

bj+1

bj
=

bn
b0

.

b) Calcular

n∑
k=1

1

k(k + 1)
.

c) Si x ̸= 1 entonces

n∏
k=1

(
1 + x2k−1

)
=

1− x2n

1− x
. ¿Cuanto vale este producto cuando x = 1?

4. Mostrar que todo n ∈ N+ se puede escribir como sumas de potencias de 2 (20 = 1, 21 =
2, 22 = 4, . . . ). Por ejemplo,

5 = 22 + 20. 14 = 23 + 22 + 21.

5. Resolver la recurrencia an = 11an−1 − 10an, n ≥ 3, donde a1 = 9 y a2 = 99.

6. Considere la recurrencia
an = αan−1 + βan−2, n ≥ 2

, con α, β, a0, a1 ∈ R fijados. Si r2 = αr + β tiene una única solución r0, mostrar que
an = (c0 + c1n)r

n
0 , para ciertas constante c0, c1. ¿Cuáles son?

7. a) Si x ∈ R, r ̸= 1, entonces

1 + x+ x2 + · · ·+ xn =
xn+1 − 1

x− 1
, n ∈ N.

1Burris, S., Lee, S. (1993). Tarski’s High School Identities. The American Mathematical Monthly, 100(3), 231–236.
doi: 10.1080/00029890.1993.11990393
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b) Si x = k + 1 ∈ N, muestre que la anterior igualdad implica que k divide a (k + 1)n − 1,
para todo n ∈ N. Por ejemplo, 3 divide a 4n − 1, 4 divide a 5n − 1 y aśı sucesivamente.

c) Si ponemos x = a/b, comprobar que la anterior igualdad implica que

am − bm = (a− b)(am−1 + am−2b+ am−3b2 + · · ·+ abm−2 + bm−1), m ∈ N+.

¿Qué casos de factorización reconoce en esta igualdad para valores pequeños de m?

d) ¿Cómo la siguiente figura ilustra una demostración sin palabras de la primera igualdad?

8. El número áureo es el valor numérico de la proporción que guardan entre śı dos segmentos
de recta a y b (a > b), que cumplen la siguiente relación: la longitud total, suma de los dos
segmentos a y b, es al segmento mayor a, lo que este segmento a es al menor b. Como ecuación
algebraica esto significa que

a+ b

a
=

a

b
.

a) Si ϕ = a/b, muestre que ϕ satisface ϕ = 1 + 1
ϕ y por tanto ϕ = 1+

√
5

2 .

b) Demostrar que para todo n ∈ N+ valen las identidades

ϕ+ ϕ2 + · · ·+ ϕn = ϕn+2 − ϕ− 1, ϕ+ ϕ3 + · · ·+ ϕ2n−1 = ϕ2n − 1,

ϕ2 + ϕ4 + · · ·+ ϕ2n = ϕ2n+1 − ϕ.

9. (Triangulación de Poĺıgonos) Un poĺıgono P es una figura geométrica cerrada plana que
consisten en una sucesión de segmentos s1, s2, . . . , sn llamados lados. Cada par de lados
consecutivos se intersecan en un punto común llamado vértice. Un poĺıgono es simple si
ningún par de lados consecutivos se intersecan.

Una diagonal de un poĺıgono simple P es un segmento que conecta dos vértices no conse-
cutivos de P . La diagonal es interior si está contenida dentro del poĺıgono (salvo por sus
vértices). Una triangulación de P consiste en dividir a P en triángulos añadiendo diagonales
interiores.

Demostrar que un poĺıgono simple de n ≥ 3 lados se puede triangular con n− 2 triángulos.
Para ello puede usar el siguiente resultado (no trivial): Cada poĺıgono simple con al menos
cuatro lados tiene una diagonal interior.
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2.3. Coeficientes binomiales.

1. De dos demostraciones, una algebraica y otra combinatoria, de la identidad(
n+m

2

)
=

(
n

2

)
+

(
m

2

)
+ nm.

En particular, obtenga que (
2n

2

)
= 2

(
n

2

)
+ n2.

2. a) Calcule el coeficiente de xk de dos maneras en la expansión (1+x)m(1+x)n = (1+x)m+n,
para demostrar la identidad de Vandermonde(

m+ n

k

)
=

k∑
j=0

(
m

j

)(
n

k − j

)
.

En particular, deduzca que (
2n

n

)
=

n∑
k=0

(
n

k

)2

.

b) Suponga que uno tiene m manzanas y n naranjas. Eligiendo k frutas de entre estas
m+ n y contando de dos maneras, argumente nuevamente esta identidad.

3. Supongamos que debemos formar un comité de n personas a partir de un grupo de 2n perso-
nas, compuesto por n mujeres y n hombres. Además, el comité debe tener como presidenta
a una mujer. Contando de dos formas distintas la forma de integrar este grupo de personas,
argumente la identidad

n∑
k=1

k

(
n

k

)2

= n

(
2n− 1

n− 1

)
, n ≥ 1.

4. Demuestre de manera combinatoria y utilizando el Teorema del Binomio las identidades

n∑
k=1

k

(
n

k

)
= n2n−1, n ≥ 1,

n∑
k=2

k(k − 1)

(
n

k

)
= n(n− 1)2n−2, n ≥ 2.

¿Cómo se pueden generalizar estas fórmulas? Note que otra forma posible de establecer la
primera fórmula es partir de la identidad (1+x)n =

∑n
k=0

(
n
k

)
xk, derivar respecto a x y luego

evaluar en x = 1.

5. Si 0 < k < n son enteros, entonces k

(
n

k

)
= n

(
n− 1

k − 1

)
y

(
n

k

)
=

k + 1

n− k

(
n

k + 1

)
. ¿Qué pasa

si k = 0 ó n?

6. Conjeture y demuestre el valor de la suma

n∑
k=1

(−1)kk

(
n

k

)
.

7. La siguiente es una variante de la identidad de Vandermonde

n∑
k=0

(
s+ k

k

)(
n− k

m

)
=

(
s+ n+ 1

s+m+ 1

)
(s,m, n ∈ N+).

Asuma que n ≥ m. Argumente de manera combinatoria esta identidad considerando el total
de caminos reticulares de (0, 0) a (s+m+1, n−m). Indicación: k en la suma corresponde a
la coordenada y = k más alta donde el camino interseca la recta vertical x = s.
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8. Sean f, g : R → R funciones.

a) Si ambas son n veces diferenciables, entonces su n-ésima derivada se calcula por

(f · g)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k).

b) Considere el operador de diferencias ∆f(x) := f(x+1)− f(x). Si para n > 1 definimos
∆nf = ∆

(
∆n−1f

)
, entonces

∆nf(x) =

n∑
j=0

(−1)j
(
n

j

)
f(x+ n− j).

9. El n-ésimo número de Bell Bn cuenta el número de particiones (o clases de equivalencia) de
un conjunto de n elementos. Por ejemplo B0 = B1 = 1 y B2 = 5. Justifique por qué estos
valores se pueden calcular de manera recursiva por

Bn+1 =

n∑
k=0

(
n

k

)
Bk.

Indicación: a partir de una partición arbitraria de n + 1 elementos, al eliminar el conjunto
que contiene el primer elemento, se obtiene una partición de un conjunto más pequeño de
0 ≤ k ≤ n elementos.

2.4. Algunos problemas de conteo

1. Encontrar el número de cadenas binarias de longitud n que contengan un número par de 0’s.

2. Encontrar una recurrencia para el número sn de cadenas binarias de longitud n que contengan
la cadena 00.

3. a) Un grupo contiene n hombres y n mujeres. ¿Cuántas maneras hay de ordenarlos en una
fila si los hombres y las mujeres se alternan?

b) Si hay un grupo de n hombres y m mujeres. ¿Cuántas maneras hay de ordenarlos en
una fila si los hombres están juntos?

4. ¿Cuántos enteros n con 1000 ≤ n ≤ 9999 hay que sean pares?

5. ¿Cuántos números enteros positivos entre 100 y 999 inclusive son: divisibles por 7?, impares?,
tienen los mismos tres d́ıgitos decimales?, no son divisibles por 4?, son divisibles por 3 o por
4?, no son divisibles por 3 ni por 4?, son divisibles por 3 pero no por 4?, son divisibles por 3
y por 4?
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6. ¿Cuántos subconjuntos con más de dos elementos tiene un conjunto con 100 elementos?

7. Se lanza una moneda 10 veces, y en cada lanzamiento sale cara o cruz. ¿Cuántos resultados
posibles hay en total?, ¿cuántos con dos caras?, ¿cuántos con máximo tres cruces?, ¿cuántos
con el mismo número de caras y cruces?

8. ¿Cuántas cadenas se pueden formar al permutar las letras de ABRACADABRA? Mista
pregunta para ELECTROENCEFALOGRAMA.

9. ¿De cuántas formas se pueden ubicar 8 torres de ajedrez del mismo color (indistinguibles) en
un tablero 8× 8 de tal manera que no se ataquen entre śı. Aqúı es válido que las torres del
mismo color se ataquen. ¿Qúe pasa si tenemos 8 torres de 8 colores diferentes?

10. Tome una matriz de n× n con 0’s en todas sus entradas. ¿De cuántas maneras podemos po-
sicionar n 1’s en ella de forma que en cada fila y columna haya exactamente un 1? Establezca
una biyección entre estas matrices y el conjunto Sn de permutaciones de [n].

11. Consideramos caminatas formadas avanzando en cada paso una unidad hacia el frente o hacia
arriba. ¿Cuántos caminos de esta forma hay del punto (0, 0) al punto (7, 6) que contengan el
trayecto señalado en la figura?

12. a) ¿Cuántas cadenas de bits contienen exactamente ocho 0’s y diez 1’s si cada 0 debe ir
seguido inmediatamente de un 1?

b) Una cadena paĺındroma es aquella cuya inversión es idéntica a si misma (por ejemplo
1001). ¿Cuántas cadenas de bits de longitud n son paĺındromas? Misma pregunta si se
consideran cadenas formadas por las letras a1, . . . , am.

13. Recuerde que un grafo es una pareja G = (V,E), donde V es el conjunto de vértices y E
es el conjunto de ejes o aristas (edges). Un ciclo (loop) en G es una arista e ∈ V que va de
un vértice en si mismo, es decir, e = {v}. El grado de un vértice v (deg(v)) es el número de
aristas incidentes con él. Note que un ciclo suma 2 al grado.

Demostrar el Lema del apretón de manos (Handshaking lemma): Si G = (V,E) es un grafo
con m = |E| aristas, entonces ∑

v∈V

deg(v) = 2m.

Use esta fórmula para determinar el número de aristas del grafo simple completo Kn =
([n], En), donde En = {{i, j} : i ̸= j}.

14. a) Sean (xi, yi) ∈ R2, i = 1, 2, 3, 4, 5 cinco puntos distintos en el plano, con coordenadas
enteras. Demostrar que el punto medio del segmento que une al menos una pareja de
estos puntos tiene coordenadas enteras.

b) Sean (xi, yi, zi) ∈ R3, i = 1, . . . , 9 nueve puntos distintos, con coordenadas enteras.
Demostrar que el punto medio del segmento que une al menos una pareja de estos
puntos tiene coordenadas enteras.
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c) ¿Cómo se generalizan estos enunciados para puntos en Rd?

15. Considere cinco puntos distintos sobre una esfera. Demostrar que siempre es posible dividir
al esfera en dos hemisferios de forma que 4 puntos están en un solo hemisferio (incluido su
borde).

16. Considere un d́ıgito j ∈ {1, 2, . . . , 9} y n ∈ N. Mostrar que siempre existe un número formado
solo por j’s y 0’s que es divisible por n. En clase vimos el caso j = 1.

17. Tome a1, . . . , an ∈ Z, no necesariamente distintos. Entonces, siempre existe un conjunto de
números consecutivos ak+1, ak+2, . . . , aℓ cuyo suma

∑ℓ
i=k+1 ai es un múltiplo de n. Indica-

ción: considere a1 + · · ·+ am mód n.

18. Considere una baraja estándar (52 cartas, 4 śımbolos de 13 cartas cada uno). ¿Cuál es el
mı́nimo número de cartas que se necesitan tomar para tener 3 cartas de la misma pinta?
¿Cuál es el mı́nimo número de cartas que se deben tomar para tener al menos una de cada
pinta?

19. a) ¿Cuántos números en {1, . . . , 1000} no son divisibles por 7, 11 ni 13?

b) ¿Cuántas permutaciones de las 27 letras de nuestro alfabeto no contienen ninguna de
las cadenas “pero”, “pues”ni “año” ?

20. Una bandera debe consistir en n franjas horizontales, donde cada franja puede ser de
uno de tres colores: rojo, blanco o azul, y ninguna franja adyacente puede tener el mismo
color. ¿Cuál es el total de diseños posibles?

Supongamos ahora que, para evitar la posible confusión de izar la bandera al revés,
se decreta que las franjas superior e inferior deben ser de colores diferentes. Sea an el
número de tales banderas con n franjas. Hallar los valores a1 y a2.

Determine una relación de recurrencia entre an y an−1. Indicación: ¿cómo se pueden
relacionar una bandera de n franjas con el mismo color en la primera y última franja y
una bandera de n− 1 franjas con las franjas superior e inferior de colores diferentes?

A partir de la recurrencia obtenida, obtenga una relación de recurrencia lineal de orden
2 entre an, an−1 y an−2.

Determine una fórmula cerrada para an, es decir, resuelva la recurrencia obtenida.

21. Recuerde que una permutación π ∈ Sn es un desarreglo (derangement) si no tiene puntos
fijos, es decir, π(k) ̸= k, para todo k ∈ [n]. Si Dn denota el número de tales permutaciones,
sabemos del Ejemplo 2.17 de las notas de clase que

Dn = (n− 1)(Dn−1 +Dn−2), n ≥ 3 D1 = 0, D2 = 1.

Emplee esta recurrencia para demostrar que también

Dn = nDn−1 + (−1)n, n ≥ 1.

22. Sean n > 2 y r, s ≥ 1 enteros. Calcular el número de formas de escribir

n = (k1 + · · ·+ kr)(j1 + · · ·+ js),

donde ki, jl ∈ N. ¿A qué se reduce el resultado si n = p es primo? Investigue en qué consiste
la convolución entre dos funciones f, g : N → R y exprese su respuesta general en términos
de esta operación.
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2.5. Extra: Sobre sumas y funciones caracteŕısticas.

Estos ejercicios recogen algunas propiedades que usamos en clase, al discutir la regla de inclu-
sión-exclusión.

1. Sea I un conjunto finito de ı́ndices, {I1, . . . , In} una partición de I y para cada i ∈ I considere
ai ∈ R. Entonces ∑

i∈I

ai =

n∑
k=1

∑
i∈Ik

ai.

¿Qué propiedades de la suma requerimos para justificar esta igualdad?

2. Fije un conjunto universal A. Dado X ⊆ A, la función 1X : A → {0, 1} dada por

1X(a) =

{
1, si a ∈ X,

0, si a ∈ A \X,

se conoce como la función caracteŕıstica de X en A. Ella satisface las siguientes propiedades,
válidas para todo a ∈ A:

a) 1∅(a) = 0 y 1A(a) = 1. Más generalmente, 1A\X(a) = 1− 1X(a).

b) 1X∩Y (a) = 1X(a)·1Y (a). Además, si X∆Y = (X∪Y )\(X∩Y ) es la diferencia simétrica
entre X e Y , entonces 1X∆Y (a) = |1X(a)− 1Y (a)|.

c) 1X1∪···∪Xn
(a) = 1−

∏n
j=1(1− 1Xj

(a)).

d) X ⊆ Y si y solo śı 1X(a) ≤ 1Y (a), para todo a ∈ A.

e) Si A es finito, entonces
∑

a∈A 1X(a) = |X|.
f ) X = {a ∈ A : 1X(a) = 1} = 1−1

X ({1}). Emplee la asignación X 7→ 1X y f 7→ f−1({1})
para establecer una biyección entre ℘(A) y 2A := {f : A → {0, 1} : f función} y concluir
que |℘(A)| = 2|A|.

2.6. Extra: Números de Fibonacci

Los siguientes ejercicios contienen algunas, de las numerosas identidades que satisfacen los
números de Fibonacci, donde n ≥ 1,m ≥ 0. Los ejercicios se pueden resolver por inducción.

1. Fn+m+1 = FnFm + Fn+1Fm+1.

2. Fn = 5Fn−4 + 3Fn−5, n ≥ 5.

3. F 2
1 + F 2

2 + F 2
3 + · · ·+ F 2

n = FnFn+1.

4. F0 + F2 + · · ·+ F2n = F2n+1 − 1.

5. F1 + F3 + · · ·+ F2n−1 = F2n.

6. F0 − F1 + F2 − F3 + · · · − F2n−1 + F2n =
F2n−1 − 1.

7. F1F2 + F2F3 + · · ·+ F2n−1F2n = F 2
2n.

8. Si A =

[
1 1
1 0

]
, An =

[
Fn+1 Fn

Fn Fn−1

]
.

Aplique determinantes para concluir que
Fn+1Fn−1 − F 2

n = (−1)n.

9.
(
3
2

)n−2 ≤ Fn < 2n.

10. Fn+1 <
(
7
4

)n
.

11. Mostrar2 que F 2
j − F 2

j−1 = (Fj − Fj−1)(Fj + Fj−1) = Fj−2Fj+1 para comprobar la fórmula[
Fn+1 Fn

Fn Fn−1

] [
1 0
0 −1

] [
Fn+1 Fn

Fn Fn−1

]
=

[
Fn−1Fn+2 F 2

n

F 2
n Fn−2Fn+1

]
.

2Óscar Ciaurri (2022) An “Esoteric” Proof of Gelin-Cesàro Identity, American Mathematical Monthly, 129:5,
465-465, doi: 10.1080/00029890.2022.2043096
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Luego tome determinantes para demostrar la identidad de Gelin-Cesàro

Fn−2Fn−1Fn+1Fn+2 − F 4
n = −1.

13



3. Números enteros

3.1. Divisibilidad

1. Encuentre un número natural positivo n tal que n/2 sea un cuadrado, n/3 sea un cubo y n/5
sea un número elevado a la 5.

2. a) Muestre que cualquier primo de la forma 3k + 1 es de la forma 6m+ 1.

b) Muestre que todo primo mayor que 3 es de la forma 6k + 1 ó 6k − 1.

c) Muestre que todo primo mayor que 5 es de la forma 10k ± 1 ó 10k ± 3.

d) Comprobar que todo primo p > 5 siempre termina en 1, 3, 7 ó 9.

3. a) Supongamos que S contiene 2n elementos, y que S está particionado en n subconjuntos
disjuntos, cada uno conteniendo exactamente dos elementos de S. Muestre que esto se
puede hacer en precisamente de

(2n− 1)(2n− 3) · · · 5 · 3 · 1 =
(2n)!

2nn!

formas.

b) Muestre que (n+ 1)(n+ 2) · · · (2n) es divisible por 2n, pero no por 2n+1.

c) Si a, b > 0, entonces a!b·b!|(ab)!. Por ejemplo, (3n)!/n!(3!)n ∈ N+. Indicación: coeficientes
multinomiales.

4. Sean k ∈ Z y n ∈ N+. En lo siguientes ejercicios establezca las propiedades de divisibili-
dad planteadas. Intente resolver las preguntas de dos formas, una directa y otra empleando
congruencias (cuando lo considere posible):

a) 3 | (k3 + 2k).

b) 6 | (17k3 + 103k).

c) 30 | (k5 − k).

d) 21 | (4n+1 + 52n−1).

e) 7 | (52n+1 + 22n+1).

f ) 7 | 32n+1 + 2n+2.

g) a2
n − 1 es divisible por 2n+2, para todo

entero impar a.

h) 32
n

+1 es divisible por 2, pero no por 4.

5. Mostrar que 1
5n

5 + 1
3n

3 + 7
15n es entero, para todo n ∈ Z.
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3.2. Máximo común divisor

1. Dados a, b ∈ N+, determine condiciones sobre la descomposición prima de a y b para deter-
minar cuando gcd(a, b) = 1.

2. Dados a, b ∈ N+, si gcd(a, b) = lcm(a, b), entonces a = b. Por otra parte, si a|b, determine los
valores gcd(a, b), lcm(a, b).

3. Encontrar el máximo común divisor de los números dados y expresarlo como combinación
lineal entera de estos:

a) a = 7469 y b = 2464.

b) a = 1000 y b = 10101.

c) a = −202 y b = 189.

d) a = 6, b = 10, c = 15.

4. a) Sea n ∈ N+. Si 1 < d ≤ n, entonces d | n!, pero d ∤ n! + 1.

b) Muestre que gcd(n! + 1, (n+ 1)! + 1) = 1.

5. Si k ∈ Z, calcular gcd(2k + 1, 9k + 4) y gcd(2k − 1, 9k + 4).

6. Asuma que d|a y d|b, donde d ≥ 1. Entonces lcm(a/d, b/d) = lcm(a, b)/d.

7. Demostrar las siguientes afirmaciones suponiendo que gcd(a, b) = 1.

a) Si c|a, entonces gcd(b, c) = 1.

b) gcd(a+ b, ab) = 1.

c) gcd(a+ b, a− b) = 1 ó 2.

d) gcd(a+ b, a2 − ab+ b2) = 1 ó 3.

8. Sean n, a y b enteros positivos.

a) Si b = aq+ r, 0 ≤ r < a, entonces nb − 1 = (na − 1)(nb−a + nb−2a + · · ·+ nr) + (nr − 1).
Por tanto, al dividir nb − 1 por na − 1 se obtiene como residuo nr − 1.

b) Demuestre que si n ≥ 2, entonces gcd(na − 1, nb − 1) = ngcd(a,b) − 1.

c) Si n > 1, a | b si y solo si (na − 1) | (nb − 1).

9. (Divisibilidad y números de Fibonacci)

a) 2 | Fn si y sólo si 3 | n.
b) 4 | Fn si y sólo si 6 | n.
c) ¿Qué se obtiene de dividir Fn+2 por Fn+1? Use esto para establecer que gcd(Fn, Fn+1) =

1.

d) Si m,n ≥ 1, se tiene que Fn | Fmn. Por ejemplo, 5 | F5n.

10. a) Considere x, y ∈ Z, no nulos, y la matriz

(
a b
c d

)
con coeficientes enteros y tal que

ad− bc = ±1. Mostrar que gcd(x, y) = gcd(ax+ by, cx+ dy). ¿Recupera esta ecuación
resultados de algunos de los ejercicios anteriores? Indicación: si x′ = ax + by y y′ =
cx+ dy, escriba x, y en términos de x′, y′.

b) (Tal vez requiere álgebra lineal) Generalice este resultado a gcd(x1, . . . , xn) = gcd(x′
1, . . . , x

′
n),

donde xj ∈ Z no son nulos, x′ = (x′
1, . . . , x

′
n)

t = Ax, y A es una matriz con entradas
enteras y det(A) = ±1.
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3.3. Congruencias

1. a) ¿Cuál es el último d́ıgito en la representación decimal de 2400?

b) Encuentre los dos últimos d́ıgitos de la representación decimal de 9500.

c) ¿Cuál son los dos últimos d́ıgitos en la representación decimal de 3400?

d) Emplear exponenciación modular rápida para calcular 32003 mod 99.

2. En un caṕıtulo de los Simpsons, Homero escribió

398712 + 436512 = 447212.

Emplear congruencias para decidir que si esta igualdad es verdadera o falsa.

3. Resolver las siguientes congruencias (ecuaciones lineales en Z/mZ):

a) 19x ≡ 4(mod 141).

b) 55x ≡ 34(mod 89).

c) 89x ≡ 2(mod 232).

4. a) Sean a ∈ Z y k, l,m, n ∈ N+. Suponga que ak ≡ 1 (mod n) y que m ≡ l (mod k).
Pruebe que am ≡ al (mod n).

b) ¿Es cierto que si ak ≡ bk(mod n) y k ≡ j(mod n), entonces aj ≡ bj(mod n)?

5. Si a ∈ Z y m ∈ N+, entonces a(a+ 1)(a+ 2) · · · (a+m− 1) ≡ 0 mód m.

6. (Pequeño teorema de Fermat) Sea n ∈ Z.

a) Si gcd(n, 7) = 1, entonces n6 − 1 es divisible por 7. Además, n7 − n es divisible por 42.

b) n13 − n es divisible por 2, 3, 5, 7 y 13.

c) Si p ̸= q son primos, entonces pq−1 + qp−1 ≡ 1 (mod pq).

7. Tienes un montón de monedas desconocido. Si las agruparas de 3 en 3 sobraŕıan 2 monedas.
Si las agrupas de 5 en 5 sobraŕıan 3 monedas. Si las agrupas de 7 en 7 sobraŕıan 2 monedas.
¿Cuál es el menor número posible de monedas que puedes tener?

8. (Criterios de divisibilidad) Sea

n =

k∑
j=0

aj10
j = (ak · · · a1a0)10, aj ∈ {0, 1, 2, . . . , 9}

la escritura de n en base decimal. Las siguientes afirmaciones son válidas:
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a) 2 | n si y solo si a0 es par.

b) 3 | n si y solo si 3 |
k∑

j=0

aj .

c) 4 | n si y solo si 4 | a110 + a0.

d) 5 | n si y solo si a0 = 0 ó 5.

e) 7 | n si y solo si 7 | (ak · · · a1)− 2a0.

f ) 8 | n si y solo si 8 | a2102 + a110 + a0.

g) 9 | n si y solo si 9 |
k∑

j=0

aj .

h) 10 | n si y solo si a0 = 0.

i) 11 | n si y solo si 11 |
k∑

j=0

(−1)jaj .

j ) 13 | n si y solo si 13 | (ak · · · a1)− 9a0.

3.4. Números primos

1. Si n > 4 no es primo, n | (n− 1)!. Concluya que p es primo si y solo si (p− 1)! ≡ −1(mod p).

2. Demuestre que si p es primo, entonces

(
p− 1

k

)
≡ (−1)k(mod p).

3. Si p es primo y a2 ≡ b2(mod p), entonces a ≡ b(mod p) ó a ≡ −b(mod p). Por ejemplo, si
a2 ≡ 1(mod p), entonces a ≡ ±1(mod p).

4. Sea pn el n-ésimo primo. Mostrar que Pn = (p1p2 · · · pn) + 1 nunca es un cuadrado perfecto.

5. Sea p un número primo y sean a ̸= b enteros positivos menores que p. Entonces p divide a
ap−2 + ap−3b+ ap−4b2 + · · ·+ bp−2.

6. a) Si x ∈ C y n ∈ N es impar, entonces xn + 1 = (x+ 1)

[
n−1∑
k=0

(−1)kxk

]
.

b) Si n = ab con b impar, entonces 2a + 1 | 2n + 1.

c) Demuestre que si 2m + 1 es primo entonces m es una potencia de 2.

d) Los números de Fermat se definen por Fn = 22
n

+ 1. El primer número de Fermat que
no es primo es F5 porque

(29 + 27 + 1)(223 − 221 + 219 − 217 + 214 − 29 − 27 + 1) = 232 + 1.

Mostrar que F0F1 · · ·Fn−1 + 2 = Fn, n ≥ 1. Concluya que gcd(Fn, Fm) = 1 si n ̸= m.
¿Por qué esto demuestra que hay infinitos primos?

e) Compruebe también las propiedades para n ≥ 2:

Fn = (Fn−1−1)2+1, Fn = Fn−1+22
n−1

F0 · · ·Fn−2, Fn = F 2
n−1−2(Fn−2−1)2.

7. Demostrar que existen infinitos primos de la forma 4n+3. Indicación: Por contracción, asuma
que existen solo finitos primos p1, . . . , pm de la forma 4n+3 y considere N = 4(p1 · · · pm)−1.
Si q es primo con q|N , entonces q = 4r + 1. Aśı N = (4m1 + 1)(4m2 + 1) · · · (4mk + 1),
llegando a una contradicción.

8. (Infinitud de primos -Auric, 1915-) Supongamos que hay solo un número finito de primos
p1 < p2 < · · · < pr y sean N = p t

r , con t ≥ 1 entero.

a) Todo entero 1 ≤ m ≤ N puede escribirse de manera única en la forma

m = pf11 pf22 · · · pfrr ,

donde (f1, . . . , fr) ∈ N.
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b) De pfi1 ≤ pfii ≤ m ≤ N = p t
r , deduzca que

fi ≤ tE, E =
log pr
log p1

, i = 1, . . . , r.

c) Contando de dos formas distintas el número de enteros 1 ≤ m ≤ N , concluya que

p t
r = N ≤ (tE + 1)r.

Pero si t es suficientemente grande p t
r > (tE + 1)r, obteniendo una contradicción. Con-

cluye que hay infinitos números primos.

9. Empleando el teorema de Dirichlet, mostrar que existen infinitos números primos que termi-
nan en 7777. De más ejemplos sobre este tipo de fenómenos.

10. a) (Legendre-Polignac) Si p es primo, entonces la máxima potencia de p que divide a n! es

νp(n!) =

∞∑
j=1

⌊
n

pj

⌋
.

En realidad esta suma es finita, ¿hasta qué termino se detiene?

b) (Requiere cálculo) [Existen infinitos primos] Por contradicción, asuma que existen finitos
primos. Dado k ∈ N+, podemos escribir k! =

∏
p p

νp(k!). Por la fórmula anterior,

νp(k!) ≤
∞∑
j=1

k

pj
=

k

p− 1
≤ k.

Por tanto, k! ≤ (
∏

p p)
k. Pero esto contradice que ĺım

k→+∞

(
∏

p p)
k

k!
= 0. Por tanto, no

pueden haber finitos primos.

11. Mostrar que todo primo p > 3 se puede escribir de la forma
√
24n+ 1, para cierto n ∈ N.

Por ejemplo,
5 =

√
24 · 1 + 1, 41 =

√
24 · 70 + 1.

12. Si n tiene k factores primos impares distintos entonces 2k | φ(n).

13. Mostrar que si p1, . . . , pn son primos mayores a 5 y 6 divide a p21 + · · ·+ p2n, entonces 6|n.

14. Empleando el postulado de Bertrand demostrar las siguientes afirmaciones:

a) pn < 2n, donde pn denota el n-ésimo primo y n > 1.

b) Existe un primo p ∈ (n, 2n] que divide a
(
2n
n

)
.

c)
(
2n
n

)
̸= mk, para todo m, k ∈ N+.

15. Mostrar que para n ≥ 2 se tiene que⌊
cos2

(
π
(n− 1)! + 1

n

)⌋
=

{
1, n es primo,

0, otros.

Este tipo de fórmulas son la base de expresiones del tipo

pn = 1 +

2n∑
m=1

 n
√

n

 m∑
j=1

⌊
cos2

(
π
(j − 1)! + 1

j

)⌋−1/n


para calcular el n-ésimo primo pn
1, aunque imprácticas computacionalmente.

1C. P. Willans (1964) On Formulae for the nth Prime Number. The Mathematical Gazette, 48(366), 413-415
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4. Números racionales

4.1. Propiedades generales

1. Completar las demostraciones sobre las propiedades de las operaciones y orden de Z y Q que
no se hicieron en clase.

2. Muestre que en la construcción de Q, si en vez de trabajar con Z × Z∗ se hace con Z × Z,
la relación de equivalencia: (a, b) ∼ (c, d) si ad = bc, resulta ser trivial, es decir, (Z× Z)/ ∼
tiene un solo elemento.

3. Considere la recta ℓα = {(x, y) ∈ R2 : y = αx}, donde α ∈ R es fijo. Demostrar que ℓα
interseca a Z2 \ {(0, 0)} si y solo si α ∈ Q. En dicho caso determinar esta intersección.

4. Muestre que para todo n ∈ N+, la fracción
12n+ 1

30n+ 2
es irreducible.

5. Expresar los siguientes racionales en la forma a/b:

a) 0, 1212 + 3, 1415.

b) 9, 9 + (6, 6× 3, 3).

c) 0,123456789/0,987654321.

d) 0.a1a2a3a4 . . . , donde aj = res(j, 10) es
el residuo de dividir j por 10.

e) 1 +
1

1 +
1

1 +
1

1

.

¿Qué se obtiene si se añaden más 1’s a
la fracción?

6. Si r ∈ Q∗, r + 1
r ∈ Z si y solo si r = ±1.

7. Sean r < s racionales y 0 ≤ λ ≤ 1 racional. Entonces:

a) r ≤ λr + (1− λ)s ≤ s. ¿Qué se obtiene si λ = 1/2?

b) Rećıprocamente, si r < t < s y t es racional, entonces t = λr+(1−λ)s, para cierto λ ∈
[0, 1]∩Q. ¿Por qué esto demuestra que entre dos racionales existen infinitos racionales?

c) Si a
b < c

d son racionales (b, d > 0), entonces a
b < t = a+c

b+d < c
d . Esta fracción se conoce

como la mediante entre a/b y c/d. ¿Cuál es el valor de λ en este caso?

d) Responda la misma pregunta siendo ahora t = na+mc
nb+md , con n,m ∈ N+.

8. Considere la función f : Q+ → Q dada por

f(p) = p− p2 − 2

p+ 2
.
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Mostrar que si p2 < 2, entonces p < f(p) y f(p)2 < 2. De la misma forma, si p2 > 2, entonces
f(p) < p y f(p)2 > 2. Concluir que

a) A=
{
p ∈ Q+ : p2 < 2

}
es acotado superiormente y no tiene supremo en Q.

b) B=
{
p ∈ Q+ :p2>2

}
, aunque acotado inferiormente, no tiene ı́nfimo en Q.

4.2. Representaciones de Q

1. Justifique geométricamente a través de la figura (semejanza de triángulos) la suma de la serie
geométrica

∞∑
n=0

rn =
1

1− r
, 0 < r < 1.

2. Encontrar el número real asociado a las siguientes fracciones continuas simples:

a) [1; 2, 2, 2, . . . ].

b) [2; 1, 1, 1, . . . ].

c) [0; k, . . . , k], k ∈ N+.

d) [1, 2, 1, 2, 1, 2, . . . ].

e) [4; 1, 2, 3, 2, 3, 2, 3, . . . ].

3. Dados r = [a0; a1, a2, . . . , an], s = [b0; b1, b2, . . . , bn] ∈ Q, determine condiciones sobre los
coeficientes aj , bj para decidir cuando r < s.

4. a) Mostrar que −[0; a1, a2, . . . , an] = [−1; 1, a1 − 1, a2, . . . , an], donde los aj ≥ 1, j =
1, . . . , n son enteros.

b) Emplear esto para expandir a −27/56 como fracción continua simple finita de la forma
[−1; 1, ...].

5. Considere los enteros a = 59 y b = 13.

a) Hallar gcd(a, b) y escribirlo como combinación lineal de ellos.

b) Expandir a
a

b
como fracción continua simple finita.

c) Determine la posición de
a

b
en el árbol de Calkin–Wilf.

6. Demostrar por inducción que r ∈ Q+ y 1/r ∈ Q+ están en el mismo nivel del árbol de
Calkin–Wilf.
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7. Sea r ∈ Q+ que aparece en el nivel n del árbol de Calkin–Wilf. Si r = [a0; a1, . . . , ak] es su
fracción continua simple finita (donde ai ≥ 0 para todo i y ak ≥ 1), entonces

a0 + a1 + · · ·+ ak = n.

8. Si x ∈ Q∗, comprobar que

|x| ·
∏

p primo

|x|p = 1.

9. (Números armónicos) Los números armónicos se definen por

Hn = 1 +
1

2
+ · · ·+ 1

n
, n ≥ 1.

A continuación se presentan dos argumentos para mostrar que Hn nunca es entero1, salvo en
el caso n = 1.

a) Sea p el máximo primo tal que p < n. Por el postulado de Bertrand n < 2p. Asuma
por contradicción que Hn es entero. Mostrar que pHn − 1 = pa

b , donde gcd(p, b) = 1 y
obtener aśı una contradicción.

b) Sea r el máximo talque 2r ≤ n < 2r+1. Si L = lcm(1, 2, . . . , n), entonces L = 2rc, con c
impar (ν2(L) = 2r). Si L = kak, k = 1, . . . , n, entonces LHn = a1 + a2 + · · ·+ an = M .
Mostrar que cada aj , j ̸= 2r es par y por tanto M es impar, mientras que L es par. Por
tanto, Hn = M/L es una fracción irreducible, no entera.

10. (Kürschák) Si m > n, entonces Hm −Hn nunca es entero2.

11. a) Si n, p, q ∈ N+, entonces
1

n
=

1

n+ 1
+

1

n(n+ 1)
y

1

pq
=

1

p(p+ q)
+

1

q(p+ q)
.

b) Si n es impar, mostrar que
2

n
=

1

(n+ 1)/2
+

1

n(n+ 1)/2
.

c) Una fracción egipcia es un número racional de la forma

1

a1
+ · · ·+ 1

an
,

donde n ∈ N+ y a1 < a2 < · · · < an son naturales. Por ejemplo 2
3 = 1

2 + 1
6 . Estas

expansiones no son únicas, por ejemplo

5

121
=

1

25
+

1

757
+

1

763 309
+

1

873 960 180 913
+

1

1 527 612 795 642 093 418 846 225
=

1

33
+

1

121
+

1

363
.

Investigue el algoritmo de Fibonacci (inducción fuerte sobre m) para demostrar que
cada racional 0 < m/n < 1 se puede escribir como una fracción egipcia.

1Parece que el primer lugar donde aparece una prueba de este resutaldo es en: Theisinger (Bemerkung über
die harmonische Reihe, Monatsh. f. Mathematik und Physik 26 (1915), 132–134, donde emplean el postulado de
Bertrand y determinantes.

2Para más información puede consultar la nota Conrad K. The p-adic growth of harmonic sums
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5. Números reales

5.1. Cuerpos ordenados. Números reales, algebraicos, tras-
cendentes.

1. Mostrar que Q[ 3
√
2] = {a + b 3

√
2 + c 3

√
4 ∈ R : a, b, c ∈ Q} es un cuerpo con las operaciones

usuales. Determinar el rećıproco de 1 + 3
√
2 como elemento de Q[ 3

√
2].

2. Determinar si los siguientes números son racionales o irracionales:

a)
√
3−

√
2.

b)
√
2 +

√
3 +

√
5.

c) log10 2.

d) 1 + 21/3 + 22/3.

e) 1 + 31/5 + 32/5 + 33/5 + 34/5.

f ) 0,10110011100011110000111100000 . . .

g) 0, 123456789101112131415161718 . . .

h)
√
2025− π +

√
2025 + π.

3. Determine si los siguientes números son algebraicos, trascendentes y/o construibles:

a)
√
3 +

√
7.

b) e2 + 1.

c)

√
2 +

√
3 +

√
19.

d) a+ bi ∈ Q[i].

e) cos
(
2π
3

)
.

f ) 1
π4+1 .

g) sin
(
2π
5

)
.

h) e+ 1
e .

4. Sea K un cuerpo y a, b, c ∈ K. Comprobar que

a3+b3+c3−3abc = (a+b+c)(a2+b2+c2−ab−bc−ac) =
(a+ b+ c)

2

[
(a−b)2+(b−c)2+(c−a)2

]
,

donde la última igualdad es válida si char(K) ̸= 2. Si K = R concluya que a3+b3+c3 = 3abc
si y solo si a+ b+ c = 0 ó a = b = c.

5. Sea K un cuerpo ordenado y asuma que cada x ∈ K con x > 0 tiene una ráız cuadrada, es
decir, existe ξ ∈ K con ξ > 0 tal que ξ2 = x (se denotará ξ =

√
x).

a) Mostrar que dicha ráız es única.

b) Si x > 0 y a > 0. Entonces

x+
a

2
√
x2 + a

<
√
x2 + a < x+

a

2x
.
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c) Si x, y ∈ K y x ≥ y, entonces

√
x+ y =

√
x+

√
x2 − y2

2
+

√
x−

√
x2 − y2

2
.

Por ejemplo, comprobar que en R

√
7 +

√
13

2
=

1 +
√
13

2
.

6. a) Sea r ∈ Q y x ∈ R \Q. Entonces r + x, r · x ∈ R \Q. Además x1/n ∈ R \Q si n ∈ N+.

b) ¿Existen números irracionales x, y tales que xy ∈ Q? Indicación: La solución usual es

x =
√
2
√
2
(la constante de Gelfond–Schneider que se sabe que es irracional. ¿Quién

debeŕıa ser y?

c) Considere ahora x = log10(4) e y =
√
10. Mostrar que son irracionales y calcular xy.

7. Denotemos por C ⊆ R al conjunto de números construibles (con regla y compás).

a) Demostrar que si y ∈ C y y ̸= 0, entonces 1/y ∈ C.

b) Si y ∈ C y y > 0 entonces
√
y ∈ C. Indicación: Calcular la longitud r del segmento de

recta perpendicular al eje x que une (1, 0) con la parte superior del ćırculo con centro
(y + 1/2, 0) y radio y + 1/2.

c) Sea θ ∈ R. Demostrar que cos(θ) ∈ C si y solo si sin(θ) ∈ C. Además si cos(θ) ∈ C
entonces cos(2θ), cos

(
θ
2

)
, sin(2θ), sin

(
θ
2

)
∈ C.

8. Si α, β ∈ R, entonces

máx(α, β) =
α+ β + |α− β|

2
, mı́n(α, β) =

α+ β − |α− β|
2

.

Además máx(α, β) + mı́n(α, β) = α+ β.

9. Sean a, b ∈ R y 0 ≤ λ ≤ 1. Entonces:

a) mı́n{a, b} ≤ λa+ (1− λ)b ≤ máx{a, b}.
b) (Densidad de los números irracionales) Dados a, b ∈ R con a < b, existe x ∈ R \ Q tal

que a < x < b.

10. Sea x ∈ R \Q. Determinar condiciones sobre a, b, c, d ∈ Q para que
ax+ b

cx+ d
sea irracional.

11. Sea ζ ∈ R un número trascendente sobre Q, n ∈ N+, r ∈ Q∗ y p ∈ Q[x]. Entonces rζ, ζn, p(ζ)
y 1

ζ son trascendentes. ¿Qué afirmaciones sobre números algebraicos se obtienen al aplicar la
contrarećıproca de la anterior afirmación?

12. Es posible demostrar que el conjunto de números algebraicos reales A es un cuerpo con las
operaciones de R. Además F. von Lindermann demostró en 1882 que π ̸∈ A. Empleando estas
observaciones se puede demostrar directamente que R \A no es contable. Para ello considere
la función f : [0,+∞) → R \ A dada por

f(x) =

{
π + x, si π + x ̸∈ A,
π − x, si π + x ∈ A.

Demostrar que f está bien definida. Además es inyectiva: si f(x) = f(y), entonces

x = |f(x)− π| = |f(y)− π| = y.
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Por tanto, R \ A contiene un conjunto no contable, concluyendo aśı el resultado. 1

5.2. Sobre la construcción de R

1. Sea C ⊆ R un conjunto acotado superiormente. Mostrar que c = supC si y solo si c es cota
superior de C y para todo ϵ > 0, existe x ∈ C tal que c − ϵ < x. Formular y demostrar la
afirmación análoga para el caso del ı́nfimo.

2. Sean A,B ⊆ (0,+∞) acotados superiormente. Si definimos A ·B := {ab ∈ R : a ∈ A, b ∈ B},
mostrar que A ·B es acotado superiormente y sup(A ·B) = sup(A) · sup(B).

3. A ⊆ R se dice inductivo si 0 ∈ A y si para todo a ∈ A, se tiene que a+1 ∈ A. Demostrar que
N es la intersección de todos los conjuntos inductivos de R (y por tanto el conjunto inductivo
más pequeño contenido en R).

4. Demostrar que toda sucesión de Cauchy en CQ es acotada.

5. Comprobar que si ĺım
n→+∞

an = a y ĺım
n→+∞

bn = b en Q, entonces ĺım
n→+∞

anbn = ab. Mostrar

además que el producto de sucesiones de Cauchy en Q es de nuevo una sucesión de Cauchy.

6. Comprobar que si α, β son cortaduras de Dedekind, entonces α < β, α = β ó β < α.

7. Mostrar que si α1, . . . , αn son contaduras de Dedekind, lo mismo es válido para
⋃n

j=1 αj y⋂n
j=1 αj . ¿Qué números reales representan estas nuevas cortaduras?

8. Dado x ∈ R y n ∈ N+ considere el intervalo In = [x− 1
n , x+

1
n ]. Demostrar que

∞⋂
n=1

In = {x}.

1J. Gaspar. Direct Proof of the Uncountability of the Transcendental Numbers. The American Mathematical
Monthly, 121(1):78–80, 2014. doi: 10.4169/amer.math.monthly.121.01.080
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6. Números complejos

6.1. Representación cartesiana

1. Calcular la siguientes expresiones:

a) (2 + i)3,
1

(1 + i)5
,

n−1∑
j=0

ij .

b) Las partes reales e imaginarias de z+1
z−1 , en términos de x = Re(z) y y = Im(z).

2. Muestre que para todo n ∈ N+, la función z → zn + zn solo asume valores reales, mientras
que z → zn − zn solo asume valores imaginarios puros.

3. Determinar los siguientes conjuntos, graficando de ser posible:

{z ∈ C : z = −z}, {z ∈ C : Im(iz−2) > 0}, {z ∈ C : |z+2|+|z−4| = 7},
{
z ∈ C :

∣∣∣∣z + 1

z

∣∣∣∣ = 2

}
.

4. Dado z ∈ C∗, mostrar que existen a, b ∈ R tales que z2 = az + b. Más generalmente, que
dado n ∈ N+, existen an, bn ∈ R tales que zn = anz + bn.

5. Mostrar que tres puntos distintos z0, z1, z ∈ C son colineales si y solo si (z−z0)/(z1−z0) ∈ R.

6. Comprobar que |Re(z)|+ |Im(z)| ≤
√
2|z|, para todo z ∈ C.

7. Dados z, w ∈ C se tiene que

|z + w|2 + |z − w|2 = 2(|z|2 + |w|2).

Interprete esta fórmula geométricamente.

8. Demuestre que
∣∣∣ a−b
1−ab

∣∣∣ < 1 si |a| < 1 y |b| < 1. Además
∣∣∣ a−b
1−ab

∣∣∣ = 1 si |a| = 1 ó |b| = 1.

6.2. Representación polar

1. Emplear la forma polar para calcular los números

(1 + i)8, (1 + i)−6,
(1 + i)2

(1− i)4
.

Además hallar las posibles ráıces 4
√
i,
√
1 + i.
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2. Mostrar que z
|z| +

|z|
z ∈ R para todo z ∈ C∗. Además si |z| = 1, entonces z2n+1

zn ∈ R, para
todo n ∈ N.

3. Comprobar que S1 = {z ∈ C : |z| = 1} es un subgrupo de (C∗, ·). Además I = {z ∈ C :
existe n ∈ N tal que zn = 1} es subgrupo de S1.

4. Demostrar que (1+i)n+(1−i)n = 2
√
2
n
cos(nπ/4) y (

√
3+i)n+(

√
3−i)n = 2n+1 cos(nπ/6),

para todo n ∈ N. Indicación: Escriba eπi/4 y eπi/6 en forma cartesiana.

5. Si z ∈ C y Re(zn) ≥ 0, para todo n ∈ N, entonces z es un número real positivo.

6. a) Fije z ∈ C. Suponiendo que puede usar derivadas, mostrar que para todo entero positivo
n, se verifica que

1 + 2z + · · ·+ nzn−1 =
nzn+1 − (n+ 1)zn + 1

(z − 1)2
.

¿Qué identidad conocida se obtiene al tomar z → 1?

b) Sea ω ∈ C \ {1} una ráız n−ésima de la unidad. Calcular 1 + ω + ω2 + · · · + ωn−1 y
1 + 2ω + 3ω2 + · · ·+ nωn−1.

7. Sean z = eiθ, z′ = eiθ
′ ∈ S1. Comprobar que

z + z′

1 + zz′
=

cos
(

θ−θ′

2

)
cos

(
θ+θ′

2

) .
Encontrar expresiones similares para

z + z′

1− zz′
,
z − z′

1 + zz′
y

z − z′

1− zz′
.

8. Mostrar que (
1 + i tan t

1− i tan t

)n

=
1 + i tan(nt)

1− i tan(nt)
, n ≥ 1.

9. Utilice la siguiente figura para comprobar las identidades

|1− eiθ|2 = 2(1− cos(θ)) = 4 sin(θ/2)2, arg(1− eiθ) =

{
θ−π
2 , si 0 < θ < π,

π+θ
2 , si − π < θ < 0.
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10. Empleando las fórmulas para la extracción de ráıces cuadradas en forma cartesiana comprobar
que

cos(θ/2)2 =
1 + cos θ

2
, sin(θ/2)2 =

1− cos θ

2
,

donde los signos se determinan según cada caso. Emplear estas fórmulas para comprobar que

eiπ/8 =

√
2 +

√
2

2
+

√
2−

√
2

2
i, eiπ/12 =

√
6 +

√
2

4
+ i

√
6−

√
2

4
.

11. Mostrar que

e2πi/5 =

√
5− 1

4
+ i

√
5 +

√
5

2
√
2

, eiπ/5 =

√
5 + 1

4
+ i

√
5−

√
5

2
√
2

,

observando que e2πi/5 satisface (z + 1/z)2 + (z + 1/z) = 1, que se puede resolver empleando
la fórmula cuadrática dos veces.

12. (Identidades de Lagrange) Si θ ∈ R \ {0,±2π,±4π, . . . } y n ∈ N+ se verifica que:

cos θ + cos(2θ) + · · ·+ cos(nθ) =
sin

(
nθ
2

)
cos((n+ 1)θ/2)

sin
(
θ
2

) ,

sin θ + sin(2θ) + · · ·+ sin(nθ) =
sin

(
nθ
2

)
sin((n+ 1)θ/2)

sin
(
θ
2

) ,

1

2
+ cos(θ) + cos(2θ) + · · ·+ cos(nθ) =

sin
(
(n+ 1

2 )θ
)

2 sin(θ/2)
.

Puede establecer estas identidades empleando la expansión 1 + z + · · ·+ zn−1 = zn−1
z−1 , para

z = eiθ ̸= 1 y luego igualando partes reales e imaginarias, ver Proposición 13.4 del Libro
Introducción al Análisis Real, gúıa actualizada de clase. Puede consultar demostraciones
geométricas recientes en los art́ıculos:

Jonathan Balsam (2022) Proof Without Words: Lagrange’s Trigonometric Identity, The
College Mathematics Journal, 53:5, 399-399, doi: 10.1080/07468342.2022.2118996

Jonathan Balsam (2023) Proof Without Words: Lagrange’s Trigonometric Identity (Part
II), The College Mathematics Journal, 54:3, 235-235, doi: 10.1080/07468342.2023.2206782

13. Empleando la congruencia de Wilson, demostrar que dado n ∈ N+, entonces

e2πi(n−1)!/n − 1

e−2πi/n − 1
=

{
1, n es primo,

0, otros.

14. (Complejos como matrices) Considere R : C → C ⊂ R2×2, dada por R(a+ ib) =

(
a b
−b a

)
.

a) R preserva las operaciones. Además |z|2 = det(R(z)), z ∈ C.
b) 1/z, z ̸= 0, se corresponde a la matriz inversa de R(z).

c) Todo elemento de C admite una representación r

(
cos θ sin θ
− sin θ cos θ

)
, con r ≥ 0, θ ∈ R,

que corresponde a la forma polar de un complejo.
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7. Polinomios en una variable

7.1. Polinomios

En adelante K denotará un cuerpo.

1. Encontrar polinomios S, T ∈ K[t] tales que gcd(p, q) = Sp+ Tq, donde:

p(t) = t2 + 1, q(t) = t5 + 1 ∈ Q[t]. p(t) = t2 + 2t+ 1, q(t) = t3 + 2t2 + 2 en
Z/3Z[t].

2. Mostrar que si p · q = 0, donde p, q ∈ K[t], entonces p = 0 ó q = 0. ¿Esto sigue siendo válido
si asumimos que K es solo un anillo?

3. Comprobar que si p(t) = an(t− α1) · · · (t− αn) ∈ K[t], entonces p(0) = an(−1)n(α1 · · ·αn).
Además, si αj ̸= 0 para todo j, también podemos escribir

p(t) = p(0)

n∏
j=1

(
1− t

αj

)
,

dando otra representación de la factorización de p(t).

4. Sean a0, . . . , an ∈ K con ai ̸= aj si i ̸= j. Mostrar que si p, q ∈ K[t] tienen grado n y
p(aj) = q(aj), j = 0, . . . , n, entonces p(t) = q(t).

5. Si F es un cuerpo, mostrar que existen infinitos polinomios mónicos irreducibles en F [x].

6. Mostrar que si F es un cuerpo finito, existen polinomios no constantes en F [t] que no tienen
ráıces en F .

7. a) Factorizar t4 + 2 en R[t] y en C[t] como producto de factores irreducibles.

b) De un ejemplo de un polinomio no constante en (Z/4Z)[t] que sea una unidad.

c) ¿Cómo se factoriza tp + ap ∈ (Z/pZ)[t], donde a ∈ Z/pZ?

8. Considere el polinomio P (t) = tp − t, donde p ∈ Z es primo.

a) Mostrar que tp−t =
∏p−1

j=0(t−j) se factoriza en Z/pZ. Por tanto, tp−1−1 =
∏p−1

j=1(t−j).

b) Emplear estos polinomios para deducir la congruencia de Wilson (p− 1)! ≡ −1(modp).

c) Comprobar que P (t− a) = P (t), para todo a ∈ Z/pZ.
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9. a) Sea f ∈ R[t] mónico tal que f(t0) > 0 para todo t0 ∈ R. Demuestre que f = P 2 + Q2

para ciertos P,Q ∈ R[t].
b) Sea f ∈ R[t] tal que f(t0) ≥ 0 para todo t0 ∈ R. Demuestre que f = P 2 + Q2 para

ciertos P,Q ∈ R[t].
c) Encuentre P,Q ∈ R[t] tales que t6 + t4 + t2 + 1 = P 2 +Q2.

10. Sea K un cuerpo y p(t) = a0+a1t+ · · ·+ant
n ∈ K[t]. La derivada de p se define formalmente

como p′(t) = a1 + 2a2t+ · · ·+ nant
n−1.

a) Demuestre que (p+ q)′ = p′ + q′ y (pq)′ = p′q + pq′, para todo p, q ∈ K[t].

b) Si a ∈ K y p(t) = q(t)(t−a)+p(a), entonces q(a) = p′(a). Más generalmente, comprobar
la fórmula de Taylor

p(t) =

n∑
j=0

p(j)(a)

j!
(t− a)j .

c) Dados p = a0 + a1t + · · · + ant
n, q ∈ K[t], se define la composición entre p y q por

(p◦ q)(t) := a0+a1q(t)+ · · ·+anq(t)
n. ¿Qué grado tiene p◦ q? Mostrar que (p◦ q)′(t) =

(p′ ◦ q)(t) · q′(t).
d) Demostrar que p no tiene ráıces repetidas si y sólo si gcd(p, p′) = 1.

e) ¿Bajo qué condiciones podemos concluir que p′ = 0 si p ∈ R[t],C[t],Z/pZ[t], p primo,
respectivamente?

11. a) Si p(t) =
∏n

j=1(t − aj) ∈ K[t], donde a1, . . . , an ∈ K son elementos distintos entre si,
entonces

1

(t− a1) · · · (t− an)
=

n∑
j=1

cj
t− aj

,
1

cj
= p′(aj) =

∏
l ̸=j

(aj − al).

b) (Interpolación de Lagrange) Sea f ∈ K[t] con deg f < n y considere la función racional
f(t)/p(t). Al escribir f(t) = f(aj) + (t − aj)gj(t) con gj ∈ K[t] y deg gj ≤ n − 2 se
obtiene que

f(t)

p(t)
=

n∑
j=1

f(t)

(t− aj)p′(aj)
=

n∑
j=1

f(aj)

(t− aj)p′(aj)
+

n∑
j=1

gj(t)

p′(aj)
.

Demostrar que el polinomio R(t) =
∑n

j=1
gj(t)
p′(aj)

de grado ≤ n− 2 es el polinomio cero.

Concluya la fórmula de interpolación de Lagrange

f(t) =

n∑
j=1

f(aj)
∏
k ̸=j

t− ak
aj − ak

.

c) Encontrar un polinomio de grado 5 en Q[x] tal que p(0) = 1, p(1) = −1, p(−1) = 0,
p(2) = 0, p(−2) = 3 y p(10) = 10.

d) Dado p ∈ C[t], demostrar que p(Z) ⊆ Q si y solo si p ∈ Q[t]. Indicación: interpolar p en
0, 1, . . . , n, con n = deg p.

e) Considere los polinomios pk(x) =

(
x

k

)
:=

x(x− 1) · · · (x− k + 1)

k!
.k ≥ 1, y

(
x
0

)
= 1.

Mostrar que deg pk = k y aunque pk(Z) ⊆ Z, pk ∈ Q[t] \ Z[t].
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12. Si p(t) = c
∏n

j=1(t− αj)
mj ∈ C[t], mostrar que

p′(t)

p(t)
=

n∑
j=1

mj

t− αj
.

13. Sea a = x+ 1
x ∈ Q(x). Demostrar que xn + 1

xn se puede escribir como un polinomio en a con
coeficientes enteros. De hecho

xn +
1

xn
= Pn(a), Pn+1(a) = aPn(a)− Pn−1(a)

donde P0 = 2 y P1 = a. En términos de los polinomios de Chebyshev Tn(cos θ) = cos(nθ) se
puede escribir

xn +
1

xn
= 2Tn

(
x+ x−1

2

)
.
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