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2Números Primos

Un número p ∈ N+ es primo si p > 1 y sus únicos divisores son 1 y
p. Es decir, si d|p, entonces d = 1 ó p.

Figure: La criba de Eratóstenes



S. Carrillo — Números primos. Criptograf́ıa RSA

3Comprobando que un número es primo

Los números que no son primos se llaman compuestos.

Proposición

Si n ∈ N no es primo, existe al menos un divisor d|n tal que
2 ≤ d ≤

√
n.

Por tanto, para comprobar que n es primo basta con dividir a n
por números m ≤

√
n.
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4Teorema fundamental de la Aritmética

Teorema
Si n ∈ N+, n ≥ 2 es puede escribir de forma única como producto
de potencias de primos.

Ejemplo

▶ 6 = 2 · 3.
▶ 44 = 22 · 11.
▶ 100 = 22 · 52.
▶ 450 = 11 · 41.

▶ 641 = 641.
▶ 999 = 33 · 37.
▶ 1024 = 210.
▶ 1223 = 1223.

▶ 1994 = 2 · 997.

▶ 360881 =
509 · 709.
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5¿Cuantos primos hay?

Teorema (Euclides)

Existen infinitos números primos.

El número primo más grande que se conoce es

282589933 − 1

y tienen 24862048 d́ıgitos. Los primos de la forma Mp = 2p − 1,
con p primo, se conocen como primos de Mersenne.

▶ http://compoasso.free.fr/primelistweb/page/prime/

liste_online_en.php

▶ https://en.wikipedia.org/wiki/Largest_known_

prime_number

http://compoasso.free.fr/primelistweb/page/prime/liste_online_en.php
http://compoasso.free.fr/primelistweb/page/prime/liste_online_en.php
https://en.wikipedia.org/wiki/Largest_known_prime_number
https://en.wikipedia.org/wiki/Largest_known_prime_number
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6Infinitud de los primos

▶ (Euclides) Dados p1, . . . , pr primos, considere (p1 · · · pr) + 1.

▶ (Iterativo - F. Saidak) Fije N ≥ 2 y considere
N1 = N(N + 1), N2 = N1(N1 + 1), N3 = N2(N2 + 1), · · ·

▶ Mostrando que
∞∑
n=1

1

pn
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+ · · · = +∞.
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7Congruencias y el principio del palomar

https://doi.org/10.1080/00029890.2025.2459047

https://doi.org/10.1080/00029890.2025.2459047
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8Como no construirlos...

Proposición

Si p(x) = cnx
n + · · ·+ c1x+ c0 ∈ Z[x] es un polinomio con

coeficientes enteros, entonces p(m) no es primo para infinitos
m ∈ Z.
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9Como no construirlos...

Euler propuso varios polinomios para generar primos. Por ejemplo,
p(n) = n2 + n+ 41 produce los siguientes 39 primos.

▶ p(1) = 43

▶ p(2) = 47

▶ p(3) = 53

▶ p(4) = 61

▶ p(5) = 71

▶ p(6) = 83

▶ p(7) = 97

▶ p(8) = 113

▶ p(9) = 131

▶ p(10) = 151

▶ p(11) = 173

▶ p(12) = 197

▶ p(13) = 223

▶ p(14) = 251

▶ p(15) = 281

▶ p(16) = 313

▶ p(17) = 347

▶ p(18) = 383

▶ p(19) = 421

▶ p(20) = 461

▶ p(21) = 503

▶ p(22) = 547

▶ p(23) = 593

▶ p(24) = 641

▶ p(25) = 691

▶ p(26) = 743

▶ p(27) = 797

▶ p(28) = 853

▶ p(29) = 911

▶ p(30) = 971

▶ p(31) = 1033

▶ p(32) = 1097

▶ p(33) = 1163

▶ p(34) = 1231

▶ p(35) = 1301

▶ p(36) = 1373

▶ p(37) = 1447

▶ p(38) = 1523

▶ p(39) = 1601

Note que p(40) = 402+40+41 = 402+80+1 = 412 no es primo.
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10El teorema de los números primos

Sea π(x) =
∑

p≤x 1, la función que cuenta el número de primos
que son menores o iguales a x. Por ejemplo

π(1) = 0, π(2) = 1, π(3) = 2, π(20) = 8.

En particular, si pn es el n-ésimo primo, entonces π(pn) = n.

Teorema (Hadamard, de la Vallée Poussin)

lim
x→+∞

π(x)

x/ ln(x)
= 1, lim

n→+∞

pn
n ln(n)

= 1.

Por ejemplo, π(1012) = 37.607′912.018 y
1012

ln(1012)
≈ 36.191′206.825, y el cociente ≈ 1.039145.
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11Más sobre infinitud - Teorema de Dirichlet

Teorema
Si gcd(a, d) = 1, entonces existen infinitos primos en la sucesión
{d · n+ a}n≥0.

Ejemplo

▶ Hay infinitos primos de la forma 6k − 1.

▶ Hay infinitos primos que terminan en 999. Basta tomar
d = 1000 y a = 999.
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12El postulado de Bertrand

Si n ≥ 2, entonces existe un primo p tal que

n < p < 2n.

Este enunciado también se enuncia como

pn < pn+1 < 2pn, n ≥ 1.
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13Aplicación a criptograf́ıa.

Cripto = secreto, grafos = escritura.

Estudio de técnicas de cifrado o codificado destinadas a alterar las
representaciones lingǘısticas de ciertos mensajes con el fin de
hacerlos ininteligibles a receptores no autorizados.
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14Cifrado Cesar

Trabajando módulo 26 se desplaza cada letra 3 unidades para
codificar un mensaje:

Ejemplo: Descifrar el mensaje: KROD PXQGR.
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15Encriptación RSA

En 1976, tres cient́ıficos del MIT (Ronald Rivest, Adi Shamir,
Leonard Adleman) introdujeron un sistema de encriptación de llave
pública basado en factorización de números enteros.

Datos necesarios: p y q números primos. n = pq. Exponente e tal
que gcd(e, (p− 1)(q − 1)) = 1.

Llave: (n, e).
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16El algoritmo con llave (n, e)

Para encriptar un mensaje M , se traduce la frase a números, pero
ahora A → 00, B → 01, C → 02,...,J → 09. Luego concatenamos
los d́ıgitos obtenidos en un solo número.

Ahora, separe los d́ıgitos en bloques de tamaño 2N , donde este
número par es el mayor tal que 2525...25 (con 2N d́ıgitos) sea
menor o igual a n (colocar X al final si hace falta).
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17

M es ahora una sucesión m1,m2, . . . ,mk. Cada mj se cifra
(cambia) por

cj = me
j (mod n).

En este paso aplicamos exponenciación modular rápida.

Mensaje encriptado: c1|c2| . . . |ck.
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18Ejemplo

Llave: (n, e) = (2537, 13).

n = 43 · 59. p = 43, q = 59. e = 13 es primo relativo con
(p− 1)(q − 1) = 42 · 58 = 2436.

Como 2525 < 2527 < 252525, 2N = 4, N = 2.

Codifiquemos: ANY −→ 001324.

0013|24XX.

c1 = 1313(mod 2537) ≡ 2038. c2 = 2413(mod 2537) ≡ 2130

Mensaje cifrado: 2038|2130.
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19¿Cómo descifrarlo?

Como e y (p− 1)(q − 1) son primos relativos, existe d tal que

d · e ≡ 1(mod (p− 1)(q − 1)).

Es decir, de = 1 + k(p− 1)(q − 1), para algún k. De esta forma,

cd = (me)d = mde = m1+k(p−1)(q−1).

Por el teorema de Euler m(p−1)(q−1) ≡ 1(mod pq). Luego

cd ≡ m · (m(p−1)(q−1))k ≡ m (mod pq).

Como n = pq, concluimos que

cd ≡ m (mod n).



S. Carrillo — Números primos. Criptograf́ıa RSA

20Ejemplo

Mensaje encriptado: 0981 0461.

Llave (n, e) = (2537, 13). n = 43 · 59. p = 43, q = 59.

▶ Encontrar d tal que 13d ≡ 1(mod 42 · 58 = 2436). Al aplicar
el algoritmo de Bezout resulta que d = 937.

▶ Calcular m = c937(mod 2537):
981937 ≡ 0704(mod 2537), 461937 ≡ 1115(mod 2537).

▶ 0704|1115 −→ HELP.


